
This document contains supplemental appendices for [1]. All the numbered equations in this document refer to [1]. The main
paper [1] can be found at the project page: https://roahmlab.github.io/PHLAME.

APPENDIX A
INCORPORATING CONSTRAINTS INTO THE AGHF

This section explains how constraints are incorporated into the AGHF by adding them to the Lagrangian.

A. Constraint Lagrangian

We incorporate constraints into the AGHF by using a penalty term in the Lagrangian in a similar fashion to [2]. By adding
this term, our original Lagrangian from (5) is augmented in the following way:

Definition A1. Let kcons be some large positive real number that penalizes constraint violation, and let gj(x) be the j-th
inequality constraint evaluated at x. Finally, let L be the Lagrangian from (5) with additional terms to enforce the constraints
for all j ∈ J . Lcons is given by:

Lcons(x, ẋ) = L(x, ẋ) +
∑
j∈J

b(gj(x)) (A1)

where
b(gj(x)) = kcons · (gj(x))2 · S(gj(x)), (A2)

where S : R→ R is defined as follows:
1) S : R→ R is a positive, differentiable function,
2) S(gj(x)) = 0 when gj(x) ≤ 0 and
3) S(gj(x)) = 1 when gj(x) > 0.

An example of an S satisfying this definition is:

S(gj(x)) =
1

2
+

1

2
tanh(ccons · gj(x)) (A3)

where ccons is a hyper-parameter that determines how fast S(gj(x)) transitions from 0 to 1, once the constraint is violated.
We introduce the form of the AGHF with Lcons in the following definition:

Definition A2. Let Lcons be used as the Lagrangian to construct the AGHF PDE. Then the constrained AGHF PDE is given
by:

∂x

∂s
= G−1(x)

(
d

dt

∂L

∂ẋ
− ∂L

∂x
−

∑
j∈J

∂b(gj(x))

∂x

)
(A4)

The proof of convergence of the constrained AGHF is given in the proof of [2, Lemma 4.1].

APPENDIX B
SOLVING THE AGHF RAPIDLY FOR HIGH DIMENSIONAL SYSTEMS

The computationally intensive part of the AGHF method is solving (7), which is a parabolic PDE. In contrast to traditional PDEs
used for optimal control (e.g., the Hamilton-Jacobi-Bellman PDE), the AGHF PDE has a complexity that scales polynomially
with increasing state dimension rather than exponentially. The favorable scaling properties of the AGHF are owed to the fact
that the domain of (7) is always two-dimensional and the dimension of the range of the function scales linearly with the state
dimension. However, evolving the AGHF quickly demands being able to evaluate the right hand side of (7) rapidly. This can
be difficult for high dimensional systems as the system dynamics and its derivatives must be evaluated each time the AGHF is
called. This appendix describes how our method for solving the AGHF allows for evaluating the right hand side of (7) rapidly.

A. Computing AGHF PDE Partial Derivatives Analytically

This subsection derives analytical expressions that can be used to evaluate (7) in terms of the rigid body dynamics equation
(1), and how to leverage spatial vector algebra to rapidly compute these expressions. We summarize the relevant results in the
following theorem.

Note, for succinctness, we have dropped the dependence on (t, s) for the following equations (i.e. x(t, s) is denoted by x).
Additionally, in similar fashion to the notation introduced in Section II of [1], we denote the first N and last N components of
x as xP1 and xP2, respectively. Lastly, we also drop the dependence on the x terms for the dynamics functions (i.e., H(xP1)
is denoted by just H and so on)

https://roahmlab.github.io/PHLAME/


Theorem B3. Consider a system with dynamics as in (1). The AGHF PDE (7) using the G described in Lemma 4 can be written
as follows:

∂x

∂s
= Ω

(
x, ẋ, ẍ, k

)
= Ω1 − (Ω2 − Ω3 +Ω4), (B5)

where

Ω1 = 2

[
ẍP1 − ẋP2

(HTH)−1
(
(ḢTH +HT Ḣ)ẋP2 +HTHẍP2 + ḢTC +HT Ċ

)] (B6)

Ω2 =

 − 1
k IN×N

∂FDT
0

∂xP1
HT

(
2C + 2HẋP2

)
−(HTH)−1 ∂FDT

0

∂xP2
HT

(
2C + 2HẋP2

))
 (B7)

Ω3 =

[
0

2k(HTH)−1(ẋP1 − xP2)

]
(B8)

Ω4 =

[
2 1
k

[
∂H
∂xP1

(ẋP2 − FD0)
]T

H (ẋP2 − FD0)

0

]
, (B9)

and FD0 = −H−1C.

Proof: The Affine Geometric Heat Flow (AGHF) Equation is given by

∂x

∂s
(t, s) = G−1(x(t, s))

(
d

dt

∂L

∂ẋs
(xs(t), ẋs(t))−

∂L

∂xs
(xs(t), ẋs(t))

)
(B10)

Let

L(xs(t), ẋs(t)) = (ẋs(t)− Fd(xs(t)))
T
G(xs(t)) (ẋs(t)− Fd(xs(t))) (B11)

where

G(xs(t)) = (F̄ (xs(t))
−1)TKF̄ (xs(t))

−1

G(xs(t)) =

[
IN×(2N−m) 0N×m

0N×(2N−m) B−1H(xP1(t, s))

]T
︸ ︷︷ ︸

(F̄ (xs(t))−1)T

[
kIN×N 0N×N

0N×N IN×N

]
︸ ︷︷ ︸

K

[
IN×(2N−m) 0N×m

0N×(2N−m) B−1H(xP1(t, s))

]
︸ ︷︷ ︸

(F̄ (xs(t))−1)

(B12)

We assume, without loss of generality (WLOG), that B = I . Under this assumption, multiplying the matrices in (B12) yields

G(xs(t)) =

[
kIN×N 0N×N

0N×N HTH

]
(B13)

From here for conciseness we drop the dependence on (t, s) for the following equations (i.e. x(t, s) is denoted by x). We also
drop the dependence on the x terms for the dynamics functions (i.e. H(xP1) is denoted by just H and so on).

To compute (B10), we need to compute the derivatives d
dt

∂L
∂ẋ and ∂L

∂x . We begin by showing that d
dt

∂L
∂ẋ = Ω1. First we must

compute the derivative ∂L
∂ẋ ,

∂L

∂ẋ
= 2G(ẋ− Fd) = 2

[
kIN×N 0N×N

0N×N HTH

]
︸ ︷︷ ︸

G

([
ẋP1

ẋP2

]
︸ ︷︷ ︸

ẋ

−
[

xP2

−H−1C

]
︸ ︷︷ ︸

Fd

)
= 2

[
k(ẋP1 − xP2)

HTHẋP2 +HTC

]
(B14)

taking the time derivative of this yields:

d

dt

∂L

∂ẋ
= 2

[
k(ẍP1 − ẋP2)

(ḢTH +HT Ḣ)ẋP2 +HTHẍP2 + ḢTC +HT Ċ

]
(B15)

and multiplying by G−1 yields



Ω1 = G−1

(
d

dt

∂L

∂ẋ

)
= 2

[
ẍP1 − ẋP2

(HTH)−1
(
(ḢTH +HT Ḣ)ẋP2 +HTHẍP2 + ḢTC +HT Ċ

)] (B16)

Next we show that G−1 ∂L
∂x = Ω2 − Ω3 +Ω4

First, taking the derivative of (B11) wrt. x, and taking transposes to ensure that the resultant derivatives are column vectors
we obtain:

∂L

∂x
= −∂FT

d

∂x
G(ẋ− Fd) + (ẋ− Fd)

T ∂G

∂x
(ẋ− Fd) +

(
(ẋ− Fd)

TG(−∂Fd

∂x
)

)T

(B17)

expanding the first and third terms yields

∂L

∂x
= −∂FT

d

∂x
Gẋ+

∂FT
d

∂x
GFd + (ẋ− Fd)

T ∂G

∂x
(ẋ− Fd) +

(
− ẋTG

∂Fd

∂x

)T

+

(
FT
d G

∂Fd

∂x

)T

(B18)

Since G is symmetric (because kI and HTH are symmetric) the last two terms can be simplified yielding:

∂L

∂x
= −∂FT

d

∂x
Gẋ+

∂FT
d

∂x
GFd + (ẋ− Fd)

T ∂G

∂x
(ẋ− Fd)−

∂FT
d

∂x
Gẋ+

∂FT
d

∂x
GFd (B19)

Grouping terms and simplifying yields

∂L

∂x
= 2

∂FT
d

∂x
GFd − 2

∂FT
d

∂x
Gẋ+ (ẋ− Fd)

T ∂G

∂x
(ẋ− Fd) (B20)

Let FD0 = −H−1C. Next we derive the constituent terms in (B20). The first term is given by:

2
∂FT

d

∂x
GFd = 2

0N×N
∂FDT

0

∂xP1

IN×N
∂FDT

0

∂xP2


︸ ︷︷ ︸

∂FT
d

∂x

kIN×N 0N×N

0N×N HTH


︸ ︷︷ ︸

G

 xP2

−H−1C


︸ ︷︷ ︸

Fd

= 2

 −∂FDT
0

∂xP1
HTC

kxP2 − ∂FDT
0

∂xP2
HTC

 (B21)

and the second term:

2
∂FT

d

∂x
Gẋ = 2

0N×N
∂FDT

0

∂xP1

IN×N
∂FDT

0

∂xP2


︸ ︷︷ ︸

∂FT
d

∂x

kIN×N 0N×N

0N×N HTH


︸ ︷︷ ︸

G

ẋP1

ẋP2


︸ ︷︷ ︸

ẋ

= 2

 ∂FDT
0

∂xP1
HTHẋP2

kẋP1 +
∂FDT

0

∂xP2
HTHẋP2

 (B22)

Collecting and rearranging the first 2 terms of (B20) yields:

2
∂FT

d

∂x
GFd − 2

∂FT
d

∂x
Gẋ =

−
∂FDT

0

∂xP1
HT

(
2C + 2HẋP2

)
−∂FDT

0

∂xP2
HT

(
2C + 2HẋP2

)
−

[
0

2k(ẋP1 − xP2)

]
(B23)

and multiplying them by G−1 gives us Ω2 and Ω3:

G−1

(
∂FT

d

∂x
GFd +

(
FT
d G

∂Fd

∂x

)T

− 2
∂FT

d

∂x
Gẋ

)
=

 − 1
k IN×N

∂FDT
0

∂xP1
HT

(
2C + 2HẋP2

)
−(HTH)−1 ∂FDT

0

∂xP2
HT

(
2C + 2HẋP2

))


︸ ︷︷ ︸
Ω2

−

[
0

2k(HTH)−1(ẋP1 − xP2)

]
︸ ︷︷ ︸

Ω3

(B24)

The third term of (B20) is given by:



(ẋ− Fd)
T ∂G

∂x
(ẋ− Fd) = (ẋ− Fd)

T

[
0N×N×2N

∂(HTH)
∂x

]
(ẋ− Fd) , (B25)

where ∂(HTH)
∂xi

be the partial derivative of HTH wrt. the ith element of the 2N ×1 column vector x. Doing the vector-tensor-
vector multiplication in (B25) yields an 2N × 1 column vector of the following form:

(ẋ− Fd)
T ∂G

∂x
(ẋ− Fd) =


(ẋ− Fd)

T

[
0N×N

∂(HTH)
∂x1

]
(ẋ− Fd)

...

(ẋ− Fd)
T

[
0N×N

∂(HTH)
∂x2N

]
(ẋ− Fd)


(B26)

and applying (3) to (B26) yields:

(ẋ− Fd)
T ∂G

∂x
(ẋ− Fd) =


(ẋP2 − FD0)

T ∂(HTH)
∂x1

(ẋP2 − FD0)
...

(ẋP2 − FD0)
T ∂(HTH)

∂x2N
(ẋP2 − FD0)

 (B27)

Notice that since H is only a function of xP1, then
∂(HTH)
∂xN+1

...
∂(HTH)
∂x2N

 =

0...
0

 (B28)

and

(ẋ− Fd)
T ∂G

∂x
(ẋ− Fd) =




(ẋP2 − FD0)

T ∂(HTH)
∂x1

(ẋP2 − FD0)

...

(ẋP2 − FD0)
T ∂(HTH)

∂xN
(ẋP2 − FD0)

0...
0




=

(ẋP2 − FD0)
T ∂(HTH)

∂xP1
(ẋP2 − FD0)

0

 (B29)

Next we show how to further simplify (B29) to yield Ω4. First, let βi be defined as the ith entry of (ẋ − Fd)
T ∂G

∂x (ẋ − Fd)
given by:

βi = (ẋP2 − FD0)
T ∂(HTH)

∂xi
(ẋP2 − FD0) (B30)

evaluating ∂(HTH)
∂xi

and expanding (B30) gives:

βi = (ẋP2 − FD0)
T ∂HT

∂xi
H (ẋP2 − FD0) + (ẋP2 − FD0)

T
HT ∂H

∂xi
(ẋP2 − FD0) (B31)

Notice βi is a scalar, and so are each of its constituent terms. Therefore the second term of βi can be expressed in the following
way



(ẋP2 − FD0)
T
HT ∂H

∂xi
(ẋP2 − FD0) =

(
(ẋP2 − FD0)

T
HT ∂H

∂xi
(ẋP2 − FD0)

)T

= (ẋP2 − FD0)
T ∂HT

∂xi
H (ẋP2 − FD0)

(B32)

Using (B32) to simplify βi gives

βi = 2 (ẋP2 − FD0)
T ∂HT

∂xi
H (ẋP2 − FD0) = 2

[
∂H
∂xi

(ẋP2 − FD0)

]T
H (ẋP2 − FD0) (B33)

Applying this to (B29) yields

(ẋ− Fd)
T ∂G

∂x
(ẋ− Fd) =

2
[

∂H
∂xP1

(ẋP2 − FD0)

]T
H (ẋP2 − FD0)

0

 (B34)

Note that to ensure that (B34) evaluates to the same terms as (B29) the 3rd dimension of the tensor ∂H
∂xP1

must be used in
the tensor-vector multiplication with ẋP2 − FD0.

Lastly, multiplying (B34) by G−1 gives us Ω4:

G−1(ẋ− Fd)
T ∂G

∂x
(ẋ− Fd) =

2
1
k

[
∂H
∂xP1

(ẋP2 − FD0)

]T
H (ẋP2 − FD0)

0

 = Ω4 (B35)

Combining these terms we have

∂x

∂s
= G−1

(
d

dt

∂L

∂ẋs
− ∂L

∂xs

)
= Ω1 − (Ω2 − Ω3 +Ω4) = Ω

(
x, ẋ, ẍ, k

)
(B36)

Note that ∂H
∂xP1

is a N ×N ×N tensor, so computing Ω4 requires a matrix-tensor multiplication. Algorithm B1 provides an
efficient approach to avoid explicitly constructing the tensor ∂H

∂xP1
and performing matrix-tensor multiplication directly. It also

details how to efficiently evaluate the analytical expressions in Theorem B3 using spatial vector algebra and rigid body dynamics
algorithms. Appendix B-C discusses the computational efficiency of these algorithms and the overall AGHF evaluation.

B. Computing the PHLAME Jacobian Partial Derivatives Analytically

To solve the system of ODEs in (22), we leverage a differential equation solver that uses an implicit method [3]. This implicit
method requires the derivative of (23). Most ODE solvers that use implicit methods approximate the derivative numerically.
This can reduce accuracy and increase the number of function evaluations, slowing down the process. To avoid this and further
speed up PHLAME, we compute and provide the analytical Jacobian of the system of ODEs with respect to ξ(s). Computing
this Jacobian, requires one to compute the Jacobian of dξi

ds (s) with respect to ξi. We summarize the form of this Jacobian as a
function of the first- and second-order derivatives of the rigid body dynamics in Theorem B4. Note that in this re-statement of
the theorem first presented in [1], we state in more detail all the dynamics terms needed to compute the Jacobian, to make
the subsequent proof clearer. To efficiently compute the required second-order derivatives, we leverage some of the algorithms
highlighted in [4]. Algorithm B2 shows how we rapidly compute all the necessary terms to evaluate the Jacobian. Once again,
for notational convenience we have abused notation and left out the transpose for dξi

ds (s).

Theorem B4. Let ξi(s) = xT (ti, s), [Dξ]i(s) = ẋT (ti, s) and [D2ξ]i(s) = ẍT (ti, s). Then the Jacobian of dξi
ds (s) with respect

to ξi(s), JΞi
(s) is given by:

JΞi
=

d
(
dξi
ds (s)

)
dξi(s)

=
dΩ

(
ξTi (s), [Dξ]Ti (s), [D

2ξ]Ti (s), k
)

dξi(s)

=
dΩ

dξi

dξi
dξi

+
dΩ

d[Dξ]i

d[Dξ]i
dξi

+
dΩ

d[D2ξ]i

d[D2ξ]i
dξi

(B37)



where
dΩ

dξi
=

dΩ1

dx
− (

dΩ2

dx
− dΩ3

dx
+

dΩ4

dx
)

=
dΩ

dξi

(
H, Ḣ, C, Ċ, FD0,

∂H

∂xP1
,
∂2H

∂x2
P1

,
∂Ḣ

∂xP1
,
∂FD0

∂xP1
,
∂FD0

∂xP2
,
∂C

∂xP1
,
∂C

∂xP2
,
∂Ċ

∂xP1
,
∂Ċ

∂xP2
,
∂2FD0

∂x2
P1

,
∂2FD0

∂x2
P2

,
∂2FD0

∂xP1∂xP2

)
(B38)

dΩ

d[Dξ]i
=

dΩ1

dẋ
− (

dΩ2

dẋ
− dΩ3

dẋ
+

dΩ4

dẋ
)

=
dΩ

d[Dξ]i

(
H,C, Ḣ, FD0,

∂H

∂xP1
,
∂FD0

∂xP1
,
∂FD0

∂xP2
,
∂C

∂xP1
,
∂C

∂xP2

) (B39)

dΩ

d[D2ξ]i
= 2I2N×2N (B40)

Proof: Let JΞi
(s) be the Jacobian of dξi

ds (s) with respect to ξi(s) given by:

JΞi =
d
(
dξi
ds (s)

)
dξi(s)

=
dΩ

(
ξi(s), [Dξ]i(s), [D

2ξ]i(s), k
)

dξi(s)
. (B41)

Applying the chain rule for multivariable functions we obtain

JΞi
=

dΩ

dξi

dξi
dξi

+
dΩ

d[Dξ]i

d[Dξ]i
dξi

+
dΩ

d[D2ξ]i

d[D2ξ]i
dξi

(B42)

From Theorem B3 we have that
∂x

∂s
= Ω

(
x, ẋ, ẍ, k

)
= Ω1 − (Ω2 − Ω3 +Ω4), (B43)

And recall that ξi(s) = xT (ti, s). Using these two results, we have that

dΩ

dξi
=

dΩ

dx(ti, s)
=

dΩ1

dx
− (

dΩ2

dx
− dΩ3

dx
+

dΩ4

dx
) (B44)

Computing the derivatives of each of the Ω terms yields the following:

dΩ1

dx
= 2

[
0N×N 0N×N

∂(HTH)−1

∂xP1
γ + (HTH)−1 ∂γ

∂xP1
(HTH)−1 ∂γ

∂xP2

]
(B45)

dΩ2

dx
=

[
1
k IN×N

∂α1

∂xP1

1
k IN×N

∂α1

∂xP2

∂(HTH)−1

∂xP1
α2 + (HTH)−1 ∂α2

∂xP1
(HTH)−1 ∂α2

∂xP2

]
(B46)

dΩ3

dx
= 2k

[
0N×N 0N×N

∂(HTH)−1

∂xP1
(ẋP1 − xP2) −(HTH)−1IN×N

]
(B47)

dΩ4

dx
=

[
2
k IN×N

∂Γ
∂xP1

2
k IN×N

∂Γ
∂xP2

0N×N 0N×N

]
(B48)

where,

γ = (ḢTH +HT Ḣ)ẋP2 +HTHẍP2 + ḢTC +HT Ċ (B49)

α1 = −∂FDT
0

∂xP1
HT

(
2C + 2HẋP2

)
(B50)

α2 = −∂FDT
0

∂xP2
HT

(
2C + 2HẋP2

)
(B51)



Γ = (ẋP2 − FD0)
T ∂HT

∂xP1
H(ẋP2 − FD0) (B52)

∂γ

∂xP1
=

∂ḢT

∂xP1

(
HẋP2 + C

)
+ ḢT

(
∂H

∂xP1
ẋP2 +

∂C

∂xP1

)
+

∂HT

∂xP1

(
ḢẋP2 +HẍP2 + Ċ

)
+HT

(
∂Ḣ

∂xP1
ẋP2 +

∂H

∂xP1
ẍP2 +

∂Ċ

∂xP1

) (B53)

∂γ

∂xP2
= ḢT ∂C

∂xP2
+HT ∂Ċ

∂xP2

(B54)

∂α1

∂xP1
=

d

dxP1

(
− ∂FDT

0

∂xP1

)
HT

(
2C + 2HẋP2

)
− ∂FDT

0

∂xP1

(
∂HT

∂xP1

(
2C + 2HẋP2

)
+H

(
2

∂C

∂xP1
+ 2

∂H

∂xP1
ẋP2

))
(B55)

∂α2

∂xP1
=

d

dxP1

(
− ∂FDT

0

∂xP2

)
HT

(
2C + 2HẋP2

)
− ∂FDT

0

∂xP2

(
∂HT

∂xP1

(
2C + 2HẋP2

)
+H

(
2

∂C

∂xP1
+ 2

∂H

∂xP1
ẋP2

))
(B56)

∂α1

∂xP2
=

d

dxP2

(
− ∂FDT

0

∂xP1

)
HT

(
2C + 2HẋP2

)
− ∂FDT

0

∂xP1
2H

∂C

∂xP2
(B57)

∂α2

∂xP2
=

d

dxP2

(
− ∂FDT

0

∂xP2

)
HT

(
2C + 2HẋP2

)
− ∂FDT

0

∂xP2
2H

∂C

∂xP2
(B58)

∂Γ

∂xP1
=

(
− ∂FDT

0

∂xP1

∂H

∂xP1
+ (ẋP2 − FD0)

T ∂2H

∂x2
P1

)
H(ẋP2 − FD0)

+ (ẋP2 − FD0)
T ∂H

∂xP1

(
∂H

∂xP1
(ẋP2 − FD0)−H

∂FD0

∂xP1

) (B59)

∂Γ

∂xP2
= −∂FDT

0

∂xP2

∂H

∂xP1
H(ẋP2 − FD0) + (ẋP2 − FD0)

T ∂H

∂xP1

(
−H

∂FD0

∂xP2

)
(B60)

The derivative of Ω wrt [Dξ]i similarly is given by

dΩ

d[Dξ]i
=

dΩ1

dẋ
− (

dΩ2

dẋ
− dΩ3

dẋ
+

dΩ4

dẋ
) (B61)

dΩ1

dẋ
= 2

[
0N×N −IN×N

(HTH)−1 ∂γ
∂ẋP1

(HTH)−1 ∂γ
∂ẋP2

]
(B62)

dΩ2

dẋ
=

[
0N×N

1
k IN×N

∂α1

∂ẋP2

0N×N (HTH)−1 ∂α2

∂ẋP2
)

]
(B63)

dΩ3

dẋ
=

[
0N×N 0N×N

2k(HTH)−1IN×N 0N×N

]
(B64)

dΩ4

dẋ
=

[
0N×N

2
k IN×N

∂Γ
∂ẋP2

0N×N 0N×N

]
(B65)

where



∂α1

∂ẋP2
= −∂FDT

0

∂xP1
2HTH (B66)

∂α2

∂ẋP2
= −∂FDT

0

∂xP2
2HTH (B67)

∂γ

∂ẋP1
=

∂ḢT

∂ẋP1

(
HẋP2 + C

)
+HT

(
∂Ḣ

∂ẋP1
ẋP2 +

∂Ċ

∂ẋP1

)
(B68)

∂γ

∂ẋP2
= (ḢTH +HT Ḣ) +HT ∂Ċ

∂ẋP2

(B69)

∂Γ

∂ẋP2
= IN×N

∂H

∂xP1
H(ẋP2 − FD0) + (ẋP2 − FD0)

T ∂H

∂xP1
H (B70)

∂γ
∂ẋP1

(B68) and ∂γ
∂ẋP2

(B69) can be simplified even further. Next, we highlight the following relations that will be used to
simplify these terms. First, Ḣ can be computed using the chain rule in the following way:

Ḣ =
∂H

∂xP1

∂xP1

∂t
=

∂H

∂xP1
ẋP1 (B71)

Second, Ċ can also be computed similarly using the chain rule:

Ċ =
∂C

∂xP1
ẋP1 +

∂C

∂xP2
ẋP2 (B72)

Lastly, recall that H is symmetric, therefore:

∂H

∂xP1
=

∂HT

∂xP1

(B73)

Using these three relations we can obtain the following:

∂Ḣ

∂ẋP1
=

∂H

∂xP1

(B74)

∂Ċ

∂ẋP1
=

∂C

∂xP1

(B75)

Using (B74) and (B75) to simplify ∂γ
∂ẋP1

(B68) yields:

∂γ

∂ẋP1
=

∂H

∂xP1

(
HẋP2 + C

)
+H

(
∂H

∂xP1
ẋP2 +

∂C

∂xP1

)
(B76)

we can apply similar line of reasoning to obtain a simplification for ∂γ
∂ẋP2

(B69)

∂γ

∂ẋP2
= ḢH +H(Ḣ +

∂C

∂xP2
) (B77)

Lastly, the derivative of Ω wrt [D2ξ]i is given by

dΩ

d[D2ξ]i
= 2

[
IN×N 0N×N

0N×N (HTH)−1 ∂γ
∂ẍP2

]
(B78)

where

∂γ

∂ẍP2
= HTH (B79)



This simplifies to

dΩ

d[D2ξ]i
= 2

[
IN×N 0N×N

0N×N IN×N

]
(B80)

Observing the terms from Equations (B49) – (B60), we have that dΩ
dξi

(B44) is a function of the rigid body dynamics and its
higher-order derivatives. Namely,

dΩ

dξi

(
H, Ḣ, C, Ċ, FD0,

∂H

∂xP1
,
∂2H

∂x2
P1

,
∂Ḣ

∂xP1
,
∂FD0

∂xP1
,
∂FD0

∂xP2
,
∂C

∂xP1
,
∂C

∂xP2
,
∂Ċ

∂xP1
,
∂Ċ

∂xP2
,
∂2FD0

∂x2
P1

,
∂2FD0

∂x2
P2

,
∂2FD0

∂xP1∂xP2

)
Similarly, observing the terms from Equations (B66), (B67), (B70), (B76) and (B77) , we have that dΩ

d[Dξ]i
(B61) is a function

of the rigid body dynamics and its first-order derivatives. Specifically,

dΩ

d[Dξ]i

(
H,C, Ḣ, FD0,

∂H

∂xP1
,
∂FD0

∂xP1
,
∂FD0

∂xP2
,
∂C

∂xP1
,
∂C

∂xP2

)
and from (B80), we have

dΩ

d[D2ξ]i
= 2

[
IN×N 0N×N

0N×N IN×N

]

C. Rapidly evaluating the AGHF (B5) and its Jacobian (B37)

This section presents several algorithms to rapidly evaluate the AGHF in (B5) and its Jacobian (B37) using spatial vector
algebra based rigid body dynamics algorithms and discusses the computational efficiency of these algorithms.

1) Rapidly evaluating the AGHF (B5)
To efficiently evaluate the AGHF at each of the collocation nodes, one can use Theorem B3. Algorithm B1 shows how to

leverage spatial vector algebra and some state-of-the-art dynamics algorithms [5] to rapidly compute the expressions introduced
in Algorithm B1.

Algorithm B1 Leveraging Spatial Vector Algebra to Compute Ω (15)

Require: x, ẋ, ẍ, k
1: H , Ḣ ← CRBA_D(xP1, ẋP1)

2: C ← RNEA(xP1, xP2, 0)

3: ∂C
∂xP1

, ∂C
∂xP2

← RNEA_D(xP1, xP2, 0)

4: Ċ ← ∂C
∂xP1

ẋP1 +
∂C

∂xP2
ẋP2

5: ∂FD0

∂xP1
, ∂FD0

∂xP2
, H−1, FD0 ← ABA_D(xP1, xP2, 0)

6: Compute Ω1 (B6), Ω2 (B7) and Ω3 (B8)

7: model gravity ← 0

8: ∂H
∂xP1

(ẋP2 − FD0)← RNEA_D(xP1, 0, ẋP2 − FD0)

9: ω4 ← 2 1
k

[
∂H
∂xP1

(ẋP2 − FD0)
]T

H(ẋP2 − FD0)

10: Ω4 ←
[
ωT
4 0T

]T
11: Compute Ω (15)

By using recursive algorithms based on spatial vector algebra to compute the necessary dynamics terms in (15), this approach
provides a substantial speedup over [6]. For example, algorithms like the Recursive Newton-Euler Algorithm (RNEA) achieve
O(N) complexity for systems with N bodies, efficiently propagating forces and accelerations throughout the robot’s kinematic
chain and enabling faster, more scalable evaluation of the dynamics terms. This combination of recursive methods allows for a



more rapid evaluation of the AGHF’s right-hand side compared to the original approach in [6], especially for higher dimensional
systems. Table I in Section V of [1], shows how well this algorithm scales with increasing system dimension compared to [6].

In Algorithm B1, we begin by computing H and Ḣ using a modified version of the Composite Rigid Body Algorithm (CRBA)
(Line 1). This modified version leverages the chain rule to compute the time derivatives of the various spatial quantities as we
traverse the rigid body tree, yielding the time derivative of the mass matrix (Ḣ). This modified version, we call CRBA_D, is a
worst-case O(N3) algorithm. We then use the Recursive Newton Euler Algorithm (RNEA) to rapidly compute C (O(N)) (Line
2) and an extended version (RNEA_D) that computes RNEA’s derivatives with respect to q, q̇ and q̈ to compute the derivatives
of C with respect to to xP1 and xP2 (O(N2) worst-case) (Line 3). These are all used to compute Ċ (Line 4).

Next, we use the algorithm introduced in [7] to compute multiple partial derivatives of the Forward Dynamics when u = 0
(Line 5) leveraging the Articulated Body Algorithm (ABA). We denote this as ABA_D. This is a worst-case O(N3) algorithm [8].
Utilizing the earlier results, we compute Ω1, Ω2 and Ω3 (Line 6). Next, we compute ∂H

∂xP1
(ẋP2−FD0) efficiently by setting the

gravity term used by our dynamics model (model gravity) to zero (Line 7) and using RNEA_D with zero velocity and setting the
acceleration to (ẋP2 − FD0), which avoids explicitly computing the tensor ∂H

∂xP1
(Line 8). Lastly, we perform a matrix-vector

multiplication to compute ω4 (Line 9) and stack the vector to obtain Ω4 (Line 10). With all the terms computed we can compute
Ω using (15) (Line 11).

Combining these operations with the O(N3) matrix-matrix multiplications needed to compute (15), results in a worst-case
O(N3) algorithm for computing the AGHF right-hand side. Figure 4 shows the mean and standard deviation of the computation
time of (15) as the number of bodies (N ) of the system increases from 2 (Double Pendulum) to 22 (Digit). While the worst-case
computational complexity is O(N3), the results from Figure 4 indicate that the algorithm scales more efficiently in practice.
Specifically, the polynomial line of best fit lacks a significant N3 term, suggesting that the computational time scales approximately
quadratically with the number of bodies N within the observed range.

2 3 4 5 6 7 22
N

0

20

40

60

80

100

AG
HF

 E
va

lu
at

io
n 

tim
e 

(
s)

Best fit: 0.41 + 1.46N + 0.24N2 + 0.00N3

Fig. 4: Scaling trend of the mean evaluation times (in µs) of the right-hand side of the AGHF using Algorithm B1 as the number of bodies (N) increases from
2 to 22. The systems with N between 2 and 6 are penduli systems (i.e., 2-link pendulum, 3-link pendulum, etc. ). The N = 7 system is the Kinova Gen3 and
the N = 22 system is the pinned Digit V3 biped. Each robot’s AGHF RHS was evaluated at a 1000 random robot configurations. Notice the polynomial line
of best fit lacks a significant N3 term, suggesting that the right-hand side computation time scales approximately quadratically with N in practice.

2) Rapidly Evaluating the AGHF Jacobian (B37)
To efficiently evaluate the AGHF Jacobian at each of the collocation nodes, one can use Theorem B4. Algorithm B2 shows

how to leverage spatial vector algebra and state-of-the-art dynamics algorithms [5] to rapidly compute this Jacobian in (B37).



We begin by first computing H , Ḣ , ∂H
∂xP1

and ∂2H
∂x2

P1
(Line 1) using a modified CRBA algorithm where we compute Ḣ and

the first and second derivatives of H with respect to xP1 using the chain rule. This modified version, we call CRBA_2D,
is a worst-case O(N4) algorithm. Similar to Appendix B-C1, we use ABA_D (worst-case O(N3)[8]) to compute the partial
derivatives of the Forward Dynamics (Line 2). We then use RNEA to compute C (O(N)) (Line 3) and RNEA_D to compute
the derivatives of C (Line 4) once more ((O(N2) worst-case). Next we use these derivatives to compute Ċ (Line 5). Next,
the function get_Hdot_D computes ∂Ḣ

∂xP1
by applying the chain rule to ∂2H

∂x2
P1

and ẋP1 (Line 6). We then use RNEA_2D,
which computes the second derivatives of the Inverse Dynamics (ID), with the acceleration passed in as zero to get the second
derivatives of C (Line 7). Next, RNEA_2D with the acceleration set to FD0 (which is the acceleration of the system, with
u = 0) allows us to compute the derivatives of the inverse dynamics (Line 8). The inverse dynamics derivatives computed using
the acceleration from FD0 are needed to to rapidly compute the second derivatives of FD0 using the algorithm proposed in
[4], ABA_2D (Line 9). The function get_Cdot_D, similar to get_Hdot_D, computes the partial derivatives of Ċ using the
chain rule with the second derivatives of C and ẋP1 and ẋP2 (Line 10). With all these terms computed we then evaluate JΞi(s)
(B37) (Line 11). Overall, combining these operations with the O(N4) tensor-matrix multiplications needed to compute (B37),
results in an O(N4) algorithm for computing JΞi

(s). Figure 5 shows the mean and standard deviation of the computation time
of JΞi

(s) as the number of bodies (N ) of the system increases from 2 (Double Pendulum) to 22 (Digit). While the worst-case
computational complexity is O(N4), the results from Figure 5 indicate that the algorithm scales more efficiently in practice.
Specifically, the polynomial line of best fit lacks a significant N4 term, suggesting that the Jacobian computational time scales
approximately cubically with the number of bodies N within the observed range.

Algorithm B2 Leveraging Spatial Vector Algebra to Compute JΞi
(s) (B37)

Require: x, ẋ, ẍ, k
1: H , Ḣ , ∂H

∂xP1
, ∂2H

∂x2
P1
← CRBA_2D(xP1, ẋP1)

2: ∂FD0

∂xP1
, ∂FD0

∂xP2
, H−1, FD0 ← ABA_D(xP1, xP2, 0)

3: C ← RNEA(xP1, xP2, 0)

4: ∂C
∂xP1

, ∂C
∂xP2

← RNEA_D(xP1, xP2, 0)

5: Ċ ← ∂C
∂xP1

ẋP1 +
∂C

∂xP2
ẋP2

6: ∂Ḣ
∂xP1

← get_Hdot_D(ẋP1, ∂2H
∂x2

P1
)

7: ∂2C
∂x2

P1
, ∂2C

∂x2
P2

, ∂2C
∂xP1∂xP2

← RNEA_2D(xP1, xP2, 0)

8: ∂2ID
∂x2

P1
, ∂2ID

∂x2
P2

, ∂2ID
∂xP1∂xP2

← RNEA_2D(xP1, xP2, FD0)

9: ∂2FD0

∂x2
P1

, ∂2FD0

∂x2
P2

, ∂2FD0

∂xP1∂xP2
← ABA_2D(∂FD0

∂xP1
, ∂FD0

∂xP2
, H−1, ∂H

∂xP1
, ∂2ID

∂x2
P1

, ∂2ID
∂x2

P2
, ∂2ID

∂xP1∂xP2
)

10: ∂Ċ
∂xP1

, ∂Ċ
∂xP2

← get_Cdot_D(ẋP1, ẋP2, ∂2C
∂x2

P1
, ∂2C

∂x2
P2

, ∂2C
∂xP1∂xP2

, ∂2C
∂xP2∂xP1

)

11: Compute JΞi
(s) (B37)

D. Pseudospectral Method for solving the AGHF

The PHLAME algorithm is summarized in Algorithm B3. It first requires one to specify some initial curve x0 with initial and
terminal points as x0 and xf respectively. Along with the initial curve one must specify the number of pseudospectral nodes p,
the penalty term k to be used in G, and the final s in the domain of the homotopy smax. Algorithm B3 then sets the values
of the initial pseudospectral nodes, ξ(0), equal to the initial curve (Line 1). Then an ODE solver (e.g., Runge Kutta or Adams
Bashforth Method [9]) can be used to simulate solution of the AGHF PDE at each of the collocation nodes (Line 2).

Algorithm B3 PHLAME

Require: x0 : [0, T ]→ R2N s.t. x0(−1) = x0, x0(1) = xf , p ∈ N, k and smax.
1: ξTi (0)← x0(ti) for i ∈ {1, . . . , p− 1} (20).
2: Compute ξ(smax) using an ODE Solver.
3: Compute u(ti) using ξ(smax) and (13).



2 3 4 5 6 7 22
N

0

1000

2000

3000

4000

5000

6000

7000

8000
AG

HF
 Ja

co
bi

an
 E

va
lu

at
io

n 
tim

e 
(

s)

1 2 3 4 5 6 7
0

50
100
150
200
250
300

Best fit: 18.70 + 22.70N + 3.12N2 + 0.99N3 + 0.01N4

Fig. 5: Scaling trend of the mean evaluation times (in µs) of the AGHF Jacobian using Algorithm B2 as the number of bodies (N) increases from 2 to 22. The
systems with N between 2 and 6 are penduli systems (i.e., 2-link pendulum, 3-link pendulum, etc. ). The N = 7 system is the Kinova Gen3 and the N = 22
system is the pinned Digit V3 biped. Each robot’s AGHF Jacobian was evaluated at a 1000 random robot configurations. Notice the polynomial line of best fit
lacks a significant N4 term, suggesting that the Jacobian computation time scales approximately cubically with N in practice.

APPENDIX C
RESULTS APPENDIX

This sections provides additional details on the experiments and results presented in [1].

A. Solver Setup

All experiments in [1] were run on a Ubuntu 22.04 machine with an Intel Xeon Platinum 8170M @ 208x 3.7GHz CPU. Each
of the evaluated numerical methods requires an initial and final desired state and an initial guess for the initial trajectory x0

along with the selection of solver specific parameters. Note the trajectory optimization methods also require an initial control
input u0 : [0, T ]→ Rm. Throughout this section, the term experiment refers to a tuple of experimental parameters consisting of
the robotic platform, x0, xf , and a set of obstacles (if present).

To perform a fair comparison, we ran a grid search over the parameter space to obtain the best possible solver parameters.
Each grid search was ran in parallel with a timeout per parameter set. The timeout for the systems with ≤ 5 DOF was 3 minutes
and for the rest, 5 minutes. Then, we re-ran the experiments sequentially with the best solver specific parameters per method
to obtain timings. The best solver specific parameter is defined as the one that yields the lowest solve time while producing a
success for the experiment as defined above.

We next describe the parameters that make up the grid search for each method. Note that these parameters and how they are
varied are summarized in Apppendix C-B.

As part of the grid search for Crocoddyl and Aligator, we considered different types of initial guesses to pass to the optimizer
based on the examples given in their publicly available code. For Aligator, we considered the following initial guesses: (1)
“Zeros,” which corresponds to an initial guess that is zero for all time for x0 and u0; (2) “Line and RNEA,” which corresponds
to an initial guess where x0 is a line connecting x0 and xf and u0 is equal to applying RNEA using x0 and ẋ0 (here, ẋ0 is
obtained by fitting a chebyshev polynomial to x0 and taking it’s derivative); (3) “Rollout and Zero,” which corresponds to an
initial guess where u0 is zero and x0 is the result of forward simulating the dynamical system using zero input; and (4) “Rollout
and Constant,” which corresponds to an initial guess for u0 that is constant and is equal to applying RNEA to the initial x0
while assuming that q̈(0) = 0 and x0 is equal to forward simulating the system using that control input. For Crocoddyl, we



considered the following initial guesses: “Zeros” and “Line and RNEA,” as defined in the Aligator case, and “Constants,” which
corresponds to setting x(t) = x0 for all t and u0 equal to a constant that is equal to applying RNEA to the initial x0 while
assuming that q̈(0) = 0 and x0. For PHLAME, we only considered the initial guess “Line‘, which corresponds to an initial guess
where x0 is a line connecting x0 and xf . Note that for our method we do not need to specify an initial guess u0.

Aligator and Croccodyl have several parameters that are specific to their implementation. First, each method relies upon
discretizing time and allow a user to specify a time discretization, δt. Second, each method allows one to include a running
cost. We choose this running cost to be the 2-norm of the input added to the 2-norm of the state with weights wu and wx,
respectively. Third, each method allows one to include a terminal cost with weight wxf . We choose this to be the 2-norm of the
difference of the final state from xf . For Aligator, we also consider the parameters µinit and ϵtol, where the former corresponds
to the initial value of the augmented Lagrangian penalty parameter and the latter to the solver tolerance. Lastly, for Aligator
we also add an equality constraint that enforces the desired final state xf and inequality constraints that enforce that the joint
frames are not inside any of the sphere obstacles.

As for PHLAME. First, p is the degree of the polynomial that represents the solution. Second, k is a penalty that ensures
dynamic feasibility and was first introduced in (11). Third, smax corresponds to the maximum ”time” that the PDE has to evolve.
Fourth, only for the experiments that have obstacles (inequality constraints) we also consider the parameters kcons, introduced
in (A2) and ccons, introduced in (A3) which control the weight of the constraint satisfaction and the sharpness of the activation
function respectively.

In summary, for Crocoddyl in each experiment we perform a grid search of Initial guess, δt, wu, wx, and wxf . For Aligator
we search over the Initial guess, δt, wu, wx, wxf , µinit and ϵtol. For unconstrained PHLAME, p, smax and k and for constrained
PHLAME p, smax, k, ccons and kcons.

B. Grid parameters for each Solver

This section contains all the varied parameters that we grid search over and use for the experiments in [1, Section V]:

Parameter Grid values
wu [10−4, 10−3, 10−2, 10−1]
wx [10−4, 10−3, 10−2, 10−1, 0.0, 1, 10]
wxf [10−4, 1.0, 10, 1000]
δt [10−2, 10−3, 10−4]
Initial guess [Zeros, Line and RNEA, Constant]

TABLE VII: Parameter Values for Crocoddyl unconstrained

Parameter Grid values
wu [10−5, 10−4, 10−3, 10−2, 10−1]
wx [10−6, 10−4, 10−3, 0.0, 1, 100, 1000]
wxf [10−6, 10−4, 1.0, 10, 1000]
δt [10−2, 10−3]
ϵtol [10−3, 10−4, 10−7]
µinit [10−2, 10−7, 10−8]
Initial guess [Zeros, Line and RNEA, Rollout and Zero, Rollout and Constant]

TABLE VIII: Parameter Values for Aligator with obstacles

Parameter Grid values
smax [10−4, 10−3, 10−2, 10−1, 1, 5, 10, 25, 50, 100]
k [103, 104, 105, 106, 107, 108, 109, 1010]
p [5, 6, 7, 8, 9, 10, 15]
Initial guess [Line]

TABLE IX: Parameter Values for PHLAME for pendulum swingup

Parameter Grid values
smax [10−4, 10−3, 10−2, 10−1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 50, 100]
k [104, 105, 106, 107, 108, 109, 1010]
p [5, 6, 7, 8, 9, 10, 15]
Initial guess [Line]

TABLE X: Parameter Values for PHLAME for Kinova without obstacles



Parameter Grid values
smax [10−4, 10−3, 10−2, 10−1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 50, 100]
k [103, 104, 105, 106, 107, 108, 109, 1010]
p [5, 6, 7, 8, 9, 10]
Initial guess [Line]

TABLE XI: Parameter Values for PHLAME for Digit without obstacles

Parameter Grid values
smax [10−4, 10−2, 10−1, 1, 5, 10, 25, 50, 100]
k [105, 106, 107, 108, 109, 1010]
p [5, 6, 7, 8, 9, 10, 15]
ccons [1, 50, 200]
kcons [105, 106, 107, 108, 109, 1010]
Initial guess [Line]

TABLE XII: Parameter Values for PHLAME Kinova with Constraints

Parameter Grid values
smax [10−4, 10−2, 10−1, 1, 5, 10, 25, 50, 100]
k [105, 106, 107, 108, 109, 1010]
p [5, 6, 7, 8, 9, 10, 15]
ccons [1, 50, 200]
kcons [105, 106, 107, 108, 109, 1010]
Initial guess [Line]

TABLE XIII: Parameter Values for PHLAME for Digit with Constraints

C. Best Parameters for the Experiments

This section provides details on the best parameter set for each evaluated method in the experiments in [1, Section V].

1) Trajectory Optimization: Kinova Arm without Obstacles

The best parameter set for PHLAME was smax = 0.1, k = 109, p = 9. The best parameter set for Crocoddyl was wx =
0.0001, wu = 0.0001, δt = 0.0001, wxf = 1, and Initial Condition = “Zeros”.

2) Trajectory Optimization: Digit without Obstacles

The best parameter set for PHLAME was smax = 1, k = 107, p = 6. The best parameter set for Crocoddyl was wx =
0.001, wu = 0.0001, δt = 0.001, wxf = 1000, and Initial Condition = “Rollout and Constant”.

3) Trajectory Optimization: Kinova Arm with Obstacles

The best parameter set for PHLAME was smax = 0.1, k = 109, p = 8, kcons = 109, ccons = 1. The best parameter set for
Aligator was wx = 0.001, wu = 0.0001, δt = 0.001, wxf = 1, and Initial Condition = “Line and RNEA”, ϵtol = 0.001, µinit =
10−7.

4) Trajectory Optimization: Digit with obstacles

For a error threshold of ϵ = 0.05 the best parameter set for PHLAME was smax = 1.0, k = 107, p = 6, kcons = 105, ccons =
200. For Aligator none of the parameter sets yielded a success when the allowable final state error ϵ = 0.05 as with all the
other experiments. With a larger error threshold (ϵ = 0.25), the best parameter set for Aligator was wx = 1.0, wu = 0.01, δt =
0.01, wxf = 10−6, and Initial Condition = “Zeros”, ϵtol = 0.001, µinit = 10−8.



REFERENCES

[1] C. Enninful Adu, C. E. Ramos Chuquiure, B. Zhang, and R. Vasudevan, Bring the heat: Rapid trajectory optimization with pseudospectral
techniques and the affine geometric heat flow equation, 2024.

[2] Y. Fan, “Robot motion planning via curve shortening flows,” Ph.D. dissertation, University of Illinois at Urbana-Champaign, 2021.
[3] L. Pareschi, G. Russo, et al., “Implicit-explicit runge-kutta schemes for stiff systems of differential equations,” Recent trends in numerical

analysis, vol. 3, pp. 269–289, 2000.
[4] S. Singh, R. P. Russell, and P. M. Wensing, “On second-order derivatives of rigid-body dynamics: Theory & implementation,” IEEE

Transactions on Robotics, 2024.
[5] J. Carpentier, G. Saurel, G. Buondonno, et al., “The pinocchio c++ library : A fast and flexible implementation of rigid body dynamics

algorithms and their analytical derivatives,” in 2019 IEEE/SICE International Symposium on System Integration (SII), 2019, pp. 614–619.
[6] S. Liu, Y. Fan, and M.-A. Belabbas, “Affine geometric heat flow and motion planning for dynamic systems,” IFAC-PapersOnLine, vol. 52,

no. 16, pp. 168–173, 2019, 11th IFAC Symposium on Nonlinear Control Systems NOLCOS 2019.
[7] J. Carpentier and N. Mansard, “Analytical Derivatives of Rigid Body Dynamics Algorithms,” in Robotics: Science and Systems (RSS

2018), Pittsburgh, United States, Jun. 2018.
[8] S. Singh, R. P. Russell, and P. M. Wensing, “Efficient analytical derivatives of rigid-body dynamics using spatial vector algebra,” IEEE

Robotics and Automation Letters, vol. 7, no. 2, 1776–1783, Apr. 2022.
[9] J. P. Boyd, Chebyshev and Fourier spectral methods. Courier Corporation, 2001.


	Introduction
	Preliminaries
	The Affine Geometric Heat Flow (AGHF) Partial Differential Equation
	Homotopies and the Action Functional
	Ensuring A Coincides with the Control Input

	Solving the AGHF rapidly for high-dimensional systems
	Computing AGHF PDE Partial Derivatives Analytically
	Pseudospectral Method for solving the AGHF
	Computing the PHLAME Jacobian

	Experiments and Results
	Experimental Setup
	Robot Platforms and Comparison Methods
	Determining Success or Failure

	PHLAME AGHF Evaluation vs Original AGHF
	Scalability with Increasing N
	Trajectory Optimization: Kinova Arm without Obstacles
	Trajectory Optimization: Digit without Obstacles
	Trajectory Optimization: Kinova Arm with Obstacles
	Trajectory Optimization: Digit with obstacles

	Conclusion and Limitations
	Appendix A: Incorporating constraints into the AGHF
	Constraint Lagrangian

	Appendix B: Solving the AGHF rapidly for high dimensional systems
	Computing AGHF PDE Partial Derivatives Analytically
	Computing the PHLAME Jacobian Partial Derivatives Analytically
	Rapidly evaluating the AGHF (B5) and its Jacobian (B37)
	Rapidly evaluating the AGHF (B5)
	Rapidly Evaluating the AGHF Jacobian (B37)

	Pseudospectral Method for solving the AGHF

	Appendix C: Results Appendix
	Solver Setup
	Grid parameters for each Solver
	Best Parameters for the Experiments
	Trajectory Optimization: Kinova Arm without Obstacles
	Trajectory Optimization: Digit without Obstacles
	Trajectory Optimization: Kinova Arm with Obstacles
	Trajectory Optimization: Digit with obstacles



