This document contains supplemental appendices for [1]]. All the numbered equations in this document refer to [1]]. The main
paper [1] can be found at the project page: https://roahmlab.github.io/PHLAME!.

APPENDIX A
INCORPORATING CONSTRAINTS INTO THE AGHF

This section explains how constraints are incorporated into the AGHF by adding them to the Lagrangian.

A. Constraint Lagrangian

We incorporate constraints into the AGHF by using a penalty term in the Lagrangian in a similar fashion to [2[]. By adding
this term, our original Lagrangian from () is augmented in the following way:

Definition Al. Let kcons be some large positive real number that penalizes constraint violation, and let g;(x) be the j-th
inequality constraint evaluated at x. Finally, let L be the Lagrangian from (3) with additional terms to enforce the constraints
forall 5 € J. Leons is given by:

Leons(@,) = L(w,) + 3 b{g;()) (A1)
jeT
where
b(g;(z)) = keons - (gj(fv))Q -S(gj(x)), (A2)

where S : R — R is defined as follows:
1) S:R — R is a positive, differentiable function,
2) S(g;(x)) =0 when g;(x) <0 and
3) S(gj(x)) =1 when g;(z) > 0.

An example of an S satisfying this definition is:

1 1
S9()) = 5 + 5 tanh(ceons - 9;(2)) A9

where cons is a hyper-parameter that determines how fast S(g;(x)) transitions from 0 to 1, once the constraint is violated.
We introduce the form of the AGHF with L, in the following definition:

Definition A2. Let L.,,s be used as the Lagrangian to construct the AGHF PDE. Then the constrained AGHF PDE is given

by:
O apy(AOL DL~ Ob(g;(@)
s ¢ (x)(dt 9i Oz ; Oz) (A9

The proof of convergence of the constrained AGHF is given in the proof of [2, Lemma 4.1].

APPENDIX B
SOLVING THE AGHF RAPIDLY FOR HIGH DIMENSIONAL SYSTEMS

The computationally intensive part of the AGHF method is solving (7)), which is a parabolic PDE. In contrast to traditional PDEs
used for optimal control (e.g., the Hamilton-Jacobi-Bellman PDE), the AGHF PDE has a complexity that scales polynomially
with increasing state dimension rather than exponentially. The favorable scaling properties of the AGHF are owed to the fact
that the domain of is always two-dimensional and the dimension of the range of the function scales linearly with the state
dimension. However, evolving the AGHF quickly demands being able to evaluate the right hand side of rapidly. This can
be difficult for high dimensional systems as the system dynamics and its derivatives must be evaluated each time the AGHF is
called. This appendix describes how our method for solving the AGHF allows for evaluating the right hand side of (7) rapidly.

A. Computing AGHF PDE Partial Derivatives Analytically

This subsection derives analytical expressions that can be used to evaluate (7)) in terms of the rigid body dynamics equation
(1), and how to leverage spatial vector algebra to rapidly compute these expressions. We summarize the relevant results in the
following theorem.

Note, for succinctness, we have dropped the dependence on (¢, s) for the following equations (i.e. z(t, s) is denoted by x).
Additionally, in similar fashion to the notation introduced in Section [lIj of [1]], we denote the first N and last N components of
x as xpy and xpo, respectively. Lastly, we also drop the dependence on the x terms for the dynamics functions (i.e., H(xp1)
is denoted by just H and so on)

https://roahmlab.github.io/PHLAME/

Theorem B3. Consider a system with dynamics as in (I). The AGHF PDE () using the G described in Lemma | can be written
as follows:

?Q<I,i,f»k) =01 — (2 — Q3 + D), (BS)
s
where
B . Zp1— Tp2))
2 =2 {(HTH)_I((HTH +HTH)ips + H ' Hips+ HTC + HTC)] e

oFD{ .
_%INXN 62?;) HT(20+ 2HLUP2>

0, = . (B7)
—(HTH) " 5l gt (20 + 2H¢p2)>
0
O = k(T H) (ipy — xpg)] (B8)
Oy = 2% [aifl ($P2 - FDO)}TH@PQ - FDO) , (B9)
0
and FDy = —H'C.
Proof: The Affine Geometric Heat Flow (AGHF) Equation is given by
Ox IR d oL . oL)
a(t,s) =G (x(t,s))(chais(xs(t),xs(t)) ~ %a. (xs(t),xs(t))> (B10)
Let
L(ws(t), &5(1) = (5(8) = Falws(1))" Glas(1)) (&5(t) — Falzs(1)) (B11)
where
Glxs(t) = (F(as(t) ™) KF(xs(t) ™
_ [Inx@n-m) ONxm]T [kINxN ONxN] [INX(2N—m) ONxm BI12
Glas(t) Onx(eN—m) B 'H(zpi(t,s)) OnxN Inxn]| |Onx@eN—m) B 'H(zpi(t,s)) ®12)

(Fza()=H7T K (F(za(t))~1)

We assume, without loss of generality (WLOG), that B = I. Under this assumption, multiplying the matrices in (B12) yields

I X X
mmm:mﬁﬁgﬁﬁ B13)

From here for conciseness we drop the dependence on (¢, s) for the following equations (i.e. z(t, s) is denoted by x). We also
drop the dependence on the z terms for the dynamics functions (i.e. H(zp1) is denoted by just H and so on).

To compute (BI0), we need to compute the derivatives %g—ﬁ and % We begin by showing that %% = (). First we must
compute the derivative %,
oL . o |kInxny Onxn Tp1 Tp2 _ k(Zp1 — xp2)
o5~ 26— Fa) =2 {oNxN HTH |\ |ips| ~ |=HC|) =2 |HTHipy + HTC (B14)
G i F,
z a

taking the time derivative of this yields:

d oL k(Zpy — p2)] (B15)

dt 0i [(HTH + HTH)ipy+ HTHipy + H'C + HTC

and multiplying by G~! yields

0, =g (4oL _ . TP = dp . . (B16)
e dtox) " |(HTH)"'((H"H + HTH)ipy + H Hips + HTC + HTC)

Next we show that G~! aL =0y — Q34+ Qy
First, taking the derlvatlve of (BII) wrt. z, and taking transposes to ensure that the resultant derivatives are column vectors
we obtain:

oL oFF . r0G T 0Fy
o *WG(I*Fd)+($*Fd) o (& —Fy)+ | (& —Fg)' G(— o) (B17)
expanding the first and third terms yields
oL OFT . 8Fd r0G . OFy T 8Fd

Since G is symmetric (because kI and HT H are symmetric) the last two terms can be simplified yielding:

oL 3FdT OFT 70G . OFT OFT
— F, - F - F F B1
= ox T T, GFy+ (& — Fy)" ax(ﬂf) — 9p Ot 5, Gl (B19)
Grouping terms and simplifying yields
oL _oFf LOFS G
Ty = 2 GFy— 254G+ (i — Fa) " 5 (& — F) (B20)

Let FDy = —H~'C. Next we derive the constituent terms in (B20). The first term is given by:

T T
26F‘;GF 5 OnxN aaiff kInxn Onxn TPz | *%Ijﬂgf H'C B21)
“a.. T - T
Ox Inug N % OnxN HTH —H-1C kxpo — BBFJ,’ZS HTC
orFT G Fy
dx
and the second term:
T
OFT G = 2 OnxN 831;]2;’ kInxn Onxn| [Zp1| 5 Dal;ff HTHip, (B22)
d i = L -
Oz Inxn a;;fg Onxny HTH| |@ps kip + aF o HTH$P2
N——
orT G i
dx
Collecting and rearranging the first 2 terms of (B20) yields:
OF! OFT T (20 +2H m) 0
QTGFF2 ad Gi = ops (B23)
x —
_OrDL T (20 L 2Hi p2> (Ep1 = op2)
and multiplying them by G~ gives us 25 and 3:
OFT OF, LOF] — vy o HT <20 +2H fbm) 0
G- (ad GFa+ (FdTG ox) oz > T - |2k(HTH) Y(ipy — xp2)
—(HTH)' 5l g7 (2(1 + 2H¢p2>)
Q3
Q2
(B24)

The third term of (B20) is given by:

70G
O

OnxNx2N

(& — Fy) (& — Fy) = (i — Fy)"

6(HTH)1 (& — Fa), (B25)
ox

where % be the partial derivative of H” H wrt. the ith element of the 2]V x 1 column vector 2. Doing the vector-tensor-

vector multiplication in (B23) yields an 2N x 1 column vector of the following form:

P [Onxn 1 .]
(& — Fg)") oaTH) | (T — Fy)
81’1
oG - .
(= Fa)" 5 (3 = Fa) = : (B26)
. [Onxn 1 .
(@—F)" | oa"w) | (& — Fa)
L L 8m2N B a

and applying (3) to yields:

(ipy — FDg)” M (&p2 — FDy)
(& — Fy) = : (B27)
T
(ipp — FDo)" 241 (3:py — FDy)

oG
s T*
(& = Fu) ox

Notice that since H is only a function of zpj, then

A(HTH)
0T N1 0
L= (B28)
A(HTH) 0
Oxzan
and
_ i ;
(ipa — FDo)" 21D (i:py — FDy)
: . T 8(HTH)
oG (ip2 — FDo)" 2410 (i, — FDy)
. T . _ _
(&= Fa) 50 @ = Fa) =\ Gy - PDy)T QUL (3, — pDg) | | = (B29)
0 0
L 0 -

Next we show how to further simplify (B29) to yield Q4. First, let 3; be defined as the ith entry of (& — Fy)T 2% (i — F)
given by:

+ O(HTH)

Bi = (&p2 — FDy) 0z,

(& pa — FDy) (B30)

evaluating 6’(];7:1{) and expanding (B30) gives:

T . T I
9./,CZ (xPQ 0) (P2 0) 9:1;1

Notice j3; is a scalar, and so are each of its constituent terms. Therefore the second term of /3; can be expressed in the following
way

Bi = (#p2 — F'Dy) (#py — FDy) (B31)

(ipy — FDo)" HT OH

T
(ipy — FDg) = ((g'cpg — FDy)" HT OH (ipa — FD0)>

ox; - O (B32)
= (ips — FD)" 5, H (ip2 = FDy)
X
Using (B32)) to simplify (; gives
. r0HT , r .
ﬂi:2(5€P2—FDO) (9:17 H(I‘pQ—FDo):2 %($P2_FDO) H(.TPQ—FD()) (B33)
Applying this to (B29) yields
T
2|8 (5 H (ipy — FDy)
, oG . [oo (T2 FDO)} P2 0
(& — Fd)T%(x —Fy)=| L% (B34)

0

Note that to ensure'th.at (lF_ﬂ]) 'eval.uates to the same terms as the 3rd dimension of the tensor 8‘2% must be used in
the tensor-vector multiplication with & ps — F' Dy.
Lastly, multiplying (B34) by G~ gives us Q:

T
21{8H o H (ips — FDy)
oG k| 5557 (@p2 — FDo] P2 0
G (i — Fd)T%(x' —Fy) = e () =y (B35)
0
Combining these terms we have
Ox d oL 0L
— =G = —— | =01 = (R —Q3+Qy) =Q t, &,k B36
88 <dt3xs axs) 1 (2 3+ 4) ($,$7x7 > ()
|
Note that 6‘11;1 isa N x N x N tensor, so computing {24 requires a matrix-tensor multiplication. Algorithm provides an

efficient approach to avoid explicitly constructing the tensor 8‘2,—}1 and performing matrix-tensor multiplication directly. It also
P1

details how to efficiently evaluate the analytical expressions in Theorem using spatial vector algebra and rigid body dynamics
algorithms. Appendix discusses the computational efficiency of these algorithms and the overall AGHF evaluation.

B. Computing the PHLAME Jacobian Partial Derivatives Analytically

To solve the system of ODEs in (22), we leverage a differential equation solver that uses an implicit method [3]]. This implicit
method requires the derivative of (23). Most ODE solvers that use implicit methods approximate the derivative numerically.
This can reduce accuracy and increase the number of function evaluations, slowing down the process. To avoid this and further
speed up PHLAME, we compute and provide the analytical Jacobian of the system of ODEs with respect to £(s). Computing
this Jacobian, requires one to compute the Jacobian of %(s) with respect to &,. We summarize the form of this Jacobian as a
function of the first- and second-order derivatives of the rigid body dynamics in Theorem [B4] Note that in this re-statement of
the theorem first presented in [1], we state in more detail all the dynamics terms needed to compute the Jacobian, to make
the subsequent proof clearer. To efficiently compute the required second-order derivatives, we leverage some of the algorithms
highlighted in [4]. Algorithm [B2] shows how we rapidly compute all the necessary terms to evaluate the Jacobian. Once again,
for notational convenience we have abused notation and left out the transpose for %(s).

Theorem B4. Let &;(s) = a7 (t;,5), [DE]i(s) = i (ti, s) and [D?€)i(s) = &7 (t;,s). Then the Jacobian of %(S) with respect
to &(s), J=,(s) is given by:

L _ACEE) _ A (), (D] (5), (D] (5). k)

=l d&i(s) B37)
_dQdg | dQ d[DE) dQ d[D?¢);

" dgdg T d[DEdg D dg;

where
9O dn d9 A0 d0
d¢;, dx dx dx dx

_ A oo pp, OH OPH OH OFDy OFDy 9C 9C 9C 9C 9°FDy 9*FDy 9°FDy
3 (T 0z%, " Oxpy’ Oxpr Oxpy Oxpy Oxpy’ dxpr Oxpe’ Ox%, = 0x%h, " Oxp10xpy
(B38)
4 _dn A% d9 9
dDg); — di di di = di B39
o (HCHFD OH OFD, 0FD, 0C ac> (B39)
d[Dg]Z E ’ 0 a:ZTP17 8:6131 ’ axpg ’ 8xp1’ 8£EP2
dQ)
m =2DLNxaN (B40)
Proof: Let Jz,(s) be the Jacobian of %(5) with respect to &;(s) given by:
dg; . . 2¢].
jo ~ WEE) _ dO(E0), [DE(5), [D°€)i(5).) B4
Applying the chain rule for multivariable functions we obtain
)) 2¢].
Jo 1205 0 _diDS | d9dD%) B0
d§; d§; ~ d[Dg]i d& d[D¢]; dg
From Theorem [B3] we have that
ZZQ<SC,IE,£ZZ,]€) 1917(927934*94)7 (B43)
s

And recall that ¢;(s) = 27 (¢;, s). Using these two results, we have that
daQ dQ dQ dQy dQ3 dy
d¢; dx(ty,s) dx (dx dx + dx) (B44)

Computing the derivatives of each of the €2 terms yields the following:

d Onxn Onxn |
—— =2 | gHTH)" _1 0 10 (B45)
dr D+ (HTH) 52 (HTH) ' 52
1 O 1 Oa 1
dQy ; FINxNamPll FINXN 550 (B46)
— |O(H" H)™ — o — «
dz OH_H)— 81}31) @+ (HTH) ' 2o (HTH)~' 2oz
dQs Onxn OnxN
) Tyt - (B47)
dx %(fPl —xpy) —(HTH) 'Iyun
2 or 2 or
A _ G INxN By wINxNBap; (B48)
dz Onxn OnxnN
where,
v=(HT'H+ H"H)ips + H Hipy + H'C + H'C (B49)
OFDT
a=———20HT (20 + 2H¢p2> (B50)
0rpy
OFDT
ay=———0HT (20 + 2H¢p2> (B51)
Oz po

Oxp1

['= (#p2 — FDy) H(&ps — FDo)

drpy Oxp drpr 2 Owpy Oz py
oH OH aC
T . ..
+H <5’$P1xp2 + 0xpy rp2 3$P1>
&y _ pr OC 5, 0C
drpy 0x po Oz p2

T T T
Oon d <—8FD0>HT(20+2H55P2>—8FD0 (aH (20+2Hx'p2>+H<2 oc +2

Orpy drpy Oz p1 Ozp1 \Oxp1 Oxp1

oC

0z py

day d [OFDL
drpy drp;

T T
)HT(2C+2H¢P2> _ OFDy (aH

Oz py

(20+ 2H$P2> + H<2

0z pa 0x py

T T
day d (_ dF D)HT(20+2H3';F2> _OFDE . 9C

Orps dups Oxpy Oxpy O0x po
Ocr _ d_(OFDIN (e ams) OFDE,, OC
Oxpy drps 0x py P2 0x py 0z py
or OFDY oH S PHN
=(— —FD H —FD
8a:p1 (8$p1 3$p1 + (33132 O) ax%l (JSPQ O)
. OH o0H . O0F D,
— FDy)T - —FDy)—H
*(@p2 0) Oz p1 (336131 (Eps o) Oz p1)
or OFDY OH . , - OH OF D,
= — H —FD — FD —H
Oz p2 Ozps Oxp1 (&p2 0) + (&p2 0) Oz p1 Oz po

The derivative of Q wrt [D¢]; similarly is given by

0, 0, doy o,
diDgl; di dié di = di
@: [ONXNB _INxNa }
di (HTH)*laTZ1 (I-ITI-I)*l—(%l2
dQ _ |OnxN tInxn gg;
dzx Onxn (HTH)_lﬁ)
Qs Onxn Onxn
di: 2k(HTH) 'Inyn Onxn

ay |:ON><N iINxNg,iEZ]
dz OnxnN Onxn

where

) oHT . OH aC OHT [. .
T <H¢P2+C>+HT< Tpa + >+ (H¢P2+H55P2+C)

+2—2aps

(B52)

(B53)

(B54)

(B55)

(B56)

(B57)

(B58)

(B59)

(B60)

(B61)

(B62)

(B63)

(B64)

(B65)

6&1 _8FDT

0 opyT
= 2H*H B66
0% po 0z p1 (B66)
T
Oas _ _OFDy yyry (B67)
Ot po Oz po
0 g oH oC
L = (Hipy+ C) + HT (o—ipa + - (B68)
Otpy Oip; 0% py 0% py
O (fTH)+ T2 (B69)
Ot ps Ot po
or OH OH
—— =Inxnz—H(ips — FD i po — F'Do)" H B70
Dipy INXNG (2 p2 0) + (Zp2 0) Ry (B70)
8211 (B68) and 8212 @) can be simplified even further. Next, we highlight the following relations that will be used to

simplify these terms. First, H can be computed using the chain rule in the following way:

- oOH 858131 oOH .
H= = B71
axpl ot 83?131 TP ()

Second, C can also be computed similarly using the chain rule:

_oc -, o
T Ozpr ' Ozpy

Tpo (B72)

Lastly, recall that H is symmetric, therefore:

T
OH _ oH ®73)
Ozp1 Ozrpy
Using these three relations we can obtain the following:
a.H = 0H (B74)
Otp1 Ozpy
oc_ _ oC (B75)
Otp1 Orpy
Using (B74) and (B73) to simplify 6(211 (B63) yields:
13} OH OH oC
7 = Hipy+C)+ H(~—ips+ ~— (B76)
Otp1 Ozp; Oxpy Oxpy
we can apply similar line of reasoning to obtain a simplification for % (B69)
0y . . oC
=HH+ H(H B77
Dk s + H(H + 5':cp2) B77)
Lastly, the derivative of © wrt [D2¢]; is given by
dQ Inxn OnxnN
—— =2 B78
d[DQE]i Onx N (HTH)_laglz ()
where
O _pyry (B79)

O po

This simplifies to

df) 9 {INXN ONxN] (BSO)

dD2¢]; " |Onxn Inxn

Observing the terms from Equations (B49) — (B60), we have that g—? (B44) is a function of the rigid body dynamics and its
higher-order derivatives. Namely,

dQ) : .
—\|\H,H FD
d& () aCa Ca 05

Similarly, observing the terms from Equations (B66)), (B67), (B70), (B76) and (B77) , we have that d[iﬁﬂ]i is a function
of the rigid body dynamics and its first-order derivatives. Specifically,

9

OH 0°H OH OFD, 0FD, 8C 98C oC 9C 8*°FD, 8°FD, 02FD,)

8;vp1’8x§;1’ a$p1’ 6£Cp1 ' a{Epg ’8xp1’ 8xp2’ 8$p17axp27 8:5%31 3%%,2 ’Bxplaxpg

aQ .
e, (H C, H,FDy,

O0H OFD, OFDy, 0C 0C
Orp1’ Oxp1’ Oxps Oxpy Oxpo

and from (B30), we have

dQ 2{INxN ONxN]

d[D2¢]; " |Onxn Inxn

C. Rapidly evaluating the AGHF (B3) and its Jacobian (B37)

This section presents several algorithms to rapidly evaluate the AGHF in (B3] and its Jacobian using spatial vector
algebra based rigid body dynamics algorithms and discusses the computational efficiency of these algorithms.

1) Rapidly evaluating the AGHF (B3))

To efficiently evaluate the AGHF at each of the collocation nodes, one can use Theorem Algorithm shows how to
leverage spatial vector algebra and some state-of-the-art dynamics algorithms [5]] to rapidly compute the expressions introduced

in Algorithm

Algorithm B1 Leveraging Spatial Vector Algebra to Compute {2

Require: z, 7, &, k
1: H, H + CRBA_D(zp1, p1)

2: C < RNEA(zp1, Tpa, 0)

aC aC
Oxzp1’ Oxp2

3:

+ RNEA_D(zp1, p2, 0)

aC
Oz pa

5: 9F Do aFDO, H_l, FDy + ABA_D(zp1, xp2, 0)

Oxp1 > Oxpa
6. Compute ; (B6), Q2 (B7) and Q3 (BI)

7: model_gravity < 0

. o9C - .
4: C «+ Drp; LP1 + Tp2

8: 32 (ipy — FDg) = RNEA_D(zp1, 0, py — FDp)

. L\ OH (4.0 FD ’ {
9wy 2% | 75,7 (EP2 0)| H(ips — FDy)
100 Q4 [wI 07"

11: Compute Q2 (I3)

By using recursive algorithms based on spatial vector algebra to compute the necessary dynamics terms in (I3), this approach
provides a substantial speedup over [6]]. For example, algorithms like the Recursive Newton-Euler Algorithm (RNEA) achieve
O(N) complexity for systems with N bodies, efficiently propagating forces and accelerations throughout the robot’s kinematic
chain and enabling faster, more scalable evaluation of the dynamics terms. This combination of recursive methods allows for a

more rapid evaluation of the AGHF’s right-hand side compared to the original approach in [|6], especially for higher dimensional
systems. Table [[| in Section [V] of [I]], shows how well this algorithm scales with increasing system dimension compared to [6].

In Algorithm , we begin by computing H and H using a modified version of the Composite Rigid Body Algorithm (CRBA)
(Line [T). This modified version leverages the chain rule to compute the time derivatives of the various spatial quantities as we
traverse the rigid body tree, yielding the time derivative of the mass matrix (H). This modified version, we call CRBA_D, is a
worst-case O(N3) algorithm. We then use the Recursive Newton Euler Algorithm (RNER) to rapidly compute C' (O(N)) (Line
[2) and an extended version (RNEA_D) that computes RNEA’s derivatives with respect to ¢, ¢ and § to compute the derivatives
of C with respect to to xp1 and zpy (O(N?) worst-case) (Line . These are all used to compute C' (Line .

Next, we use the algorithm introduced in [7] to compute multiple partial derivatives of the Forward Dynamics when u = 0
(Line [5)) leveraging the Articulated Body Algorithm (AB2). We denote this as ABA_D. This is a worst-case O(N?3) algorithm [8].
Utilizing the earlier results, we compute 21, Q5 and Q3 (Line [6)). Next, we compute a‘z,—i(fr p2 — F'Dy) efficiently by setting the
gravity term used by our dynamics model (model_gravity) to zero (Line[/) and using RNEA_D with zero velocity and setting the
acceleration to (#p2 — F'Dy), which avoids explicitly computing the tensor ;THl (Line . Lastly, we perform a matrix-vector
multiplication to compute w4 (Line [9) and stack the vector to obtain €4 (Line[I0). With all the terms computed we can compute
2 using (T3) (Line [TT).

Combining these operations with the O(N?3) matrix-matrix multiplications needed to compute (T3), results in a worst-case
O(N?) algorithm for computing the AGHF right-hand side. Figure [4] shows the mean and standard deviation of the computation
time of as the number of bodies (/V) of the system increases from 2 (Double Pendulum) to 22 (Digit). While the worst-case
computational complexity is O(N?), the results from Figure 4| indicate that the algorithm scales more efficiently in practice.
Specifically, the polynomial line of best fit lacks a significant N term, suggesting that the computational time scales approximately
quadratically with the number of bodies N within the observed range.

———————— Best fit: 0.41 + 1.46N + 0.24N? + — 0.00N3

100 -

g 80
(0]
S
5 601
©
5
o
>
L 40_
[N
I
O
< -

20 I,I’”

II
=
I
0_
2 3 45 6 7 22

N

Fig. 4: Scaling trend of the mean evaluation times (in us) of the right-hand side of the AGHF using Algorithm as the number of bodies (N) increases from
2 to 22. The systems with N between 2 and 6 are penduli systems (i.e., 2-link pendulum, 3-link pendulum, etc.). The N = 7 system is the Kinova Gen3 and
the N = 22 system is the pinned Digit V3 biped. Each robot’s AGHF RHS was evaluated at a 1000 random robot configurations. Notice the polynomial line
of best fit lacks a significant N term, suggesting that the right-hand side computation time scales approximately quadratically with N in practice.

2) Rapidly Evaluating the AGHF Jacobian (B37)
To efficiently evaluate the AGHF Jacobian at each of the collocation nodes, one can use Theorem Algorithm [B2] shows
how to leverage spatial vector algebra and state-of-the-art dynamics algorithms [5] to rapidly compute this Jacobian in (B37).

We begin by first computing H, H, 8821 and ngH (Line [1) using a modified CRBA algorithm where we compute H and
: P1

the first and second derivatives of H with respect to xp; using the chain rule. This modified version, we call CRBA_2D,
is a worst-case O(N?) algorithm. Similar to Appendix we use ABA_D (worst-case O(N?3)[8]]) to compute the partial
derivatives of the Forward Dynamics (Line [2). We then use RNEA to compute C' (O(N)) (Line [3) and RNEA_D to_compute
the derivatives of C' (Line once more .((O(N 2) worst-case). Next we use these derivatives to_compute c (Line . Next,
the function get_Hdot_D computes 8‘151 by applying the chain rule to gif and ©p; (Line [6). We then use RNEA_2D,
which computes the second derivatives of the Inverse Dynamics (ID), with the ‘acceleration passed 1n as zero to get the second
derivatives of C' (Line . Next, RNEA_2D with the acceleration set to F'Dy (which is the acceleration of the system, with
u = 0) allows us to compute the derivatives of the inverse dynamics (Line [§). The inverse dynamics derivatives computed using
the acceleration from F'D, are needed to to rapidly compute the second derivatives of F'Dj using the algorithm proposed in
[4], aBA_2D (Line E]) The function get_Cdot_D, similar to get_Hdot_D, computes the partial derivatives of C using the
chain rule with the second derivatives of C' and & p; and & po (Line . With all these terms computed we then evaluate Jz, ()
(Line . Overall, combining these operations with the O(N*) tensor-matrix multiplications needed to compute (B37),
results in an O(N*) algorithm for computing J=, (s). Figure [5| shows the mean and standard deviation of the computation time
of Jz,(s) as the number of bodies (/V) of the system increases from 2 (Double Pendulum) to 22 (Digit). While the worst-case
computational complexity is O(N?), the results from Figure |5| indicate that the algorithm scales more efficiently in practice.
Specifically, the polynomial line of best fit lacks a significant N* term, suggesting that the Jacobian computational time scales
approximately cubically with the number of bodies N within the observed range.

Algorithm B2 Leveraging Spatial Vector Algebra to Compute Jz;, (s) (B37)

Require: z, 7, &, k
. A)
. H, H, 21 O H . crRBA_2D(zp1, ip1)

’ 69:1:'1’ 61?,1

2. 98Do " OFDo pr—1 ppo ¢ ABA D(zpi, Zp2, 0)

Oxp1’ Oxp2

3: C < RNEA(xp1, Tpa2, 0)

4 25, &« RNEA_D(zp1, TP, 0)

5. C 3?021 Tp1 + é;zigj"PQ

6: 2 ¢ get_Hdot_D(ipi, %ﬁi)

7: 88;??1 a‘r’;i, mffg;m < RNEA_2D(zp1, Tpa, 0)

8: gi%’?, gigfz 521D RNEA_2D(zp1. ©p2. F Do)

o BE GE D nan oo 40 o S SIS0 S
10: 3221’ 3?522 ¢ get_Cdot_D(Zp1, Tp2, gj%.cl’ adjfpc;’ 3151236;3132’ 3961?22!%191)

11: Compute J=, (s) (B37)

D. Pseudospectral Method for solving the AGHF

The PHLAME algorithm is summarized in Algorithm It first requires one to specify some initial curve zy with initial and
terminal points as xo and x; respectively. Along with the initial curve one must specify the number of pseudospectral nodes p,
the penalty term k to be used in G, and the final s in the domain of the homotopy $y,q.. Algorithm then sets the values
of the initial pseudospectral nodes, £(0), equal to the initial curve (Line . Then an ODE solver (e.g., Runge Kutta or Adams
Bashforth Method [9]]) can be used to simulate solution of the AGHF PDE at each of the collocation nodes (Line [2).

Algorithm B3 PHLAME

Require: 7 : [0,7] — R*V s.t. 29(—1) = x0, 2o(1) = x4, p €N, k and Sz
1: €5(0) « zo(t;) fori € {1,...,p— 1} @0).
2: Compute &(S,4,) using an ODE Solver.
3. Compute u(t;) using £(Smaz) and (13).

77777777 Best fit: —18.70 + 22.70N + — 3.12N2 + 0.99N3 + — 0.01N*

8000 300 I ¥
250 ’

g 70007 200 - A
> 150 -
v x
£ 6000 - |
£ 100 =
S 50 A e o
2 5000 - 0l_T
© T T T T T T
2 1 2 3 4 5 6 7
> 4000 A
w
C
©
2 3000 -
o
(@)
Ry
o 2000 -
T
<

1000

0 A -0--0—-0-"'-.-*

22

N
w -
S
Ul
o) 4
~

N

Fig. 5: Scaling trend of the mean evaluation times (in us) of the AGHF Jacobian using Algorithm as the number of bodies (N) increases from 2 to 22. The
systems with IV between 2 and 6 are penduli systems (i.e., 2-link pendulum, 3-link pendulum, etc.). The N = 7 system is the Kinova Gen3 and the N = 22
system is the pinned Digit V3 biped. Each robot’s AGHF Jacobian was evaluated at a 1000 random robot configurations. Notice the polynomial line of best fit
lacks a significant N4 term, suggesting that the Jacobian computation time scales approximately cubically with N in practice.

APPENDIX C
RESULTS APPENDIX

This sections provides additional details on the experiments and results presented in [/1]].

A. Solver Setup

All experiments in [1] were run on a Ubuntu 22.04 machine with an Intel Xeon Platinum 8170M @ 208x 3.7GHz CPU. Each
of the evaluated numerical methods requires an initial and final desired state and an initial guess for the initial trajectory xg
along with the selection of solver specific parameters. Note the trajectory optimization methods also require an initial control
input wg : [0, 7] — R™. Throughout this section, the term experiment refers to a tuple of experimental parameters consisting of
the robotic platform, xo, xy, and a set of obstacles (if present).

To perform a fair comparison, we ran a grid search over the parameter space to obtain the best possible solver parameters.
Each grid search was ran in parallel with a timeout per parameter set. The timeout for the systems with < 5 DOF was 3 minutes
and for the rest, 5 minutes. Then, we re-ran the experiments sequentially with the best solver specific parameters per method
to obtain timings. The best solver specific parameter is defined as the one that yields the lowest solve time while producing a
success for the experiment as defined above.

We next describe the parameters that make up the grid search for each method. Note that these parameters and how they are
varied are summarized in Apppendix

As part of the grid search for Crocoddyl and Aligator, we considered different types of initial guesses to pass to the optimizer
based on the examples given in their publicly available code. For Aligator, we considered the following initial guesses: (1)
“Zeros,” which corresponds to an initial guess that is zero for all time for ¢ and ug; (2) “Line and RNEA,” which corresponds
to an initial guess where xq is a line connecting xg and xy and ug is equal to applying RNEA using x¢ and i, (here, &g is
obtained by fitting a chebyshev polynomial to zy and taking it’s derivative); (3) “Rollout and Zero,” which corresponds to an
initial guess where w is zero and x is the result of forward simulating the dynamical system using zero input; and (4) “Rollout
and Constant,” which corresponds to an initial guess for ug that is constant and is equal to applying RNEA to the initial xg
while assuming that ¢(0) = 0 and x(is equal to forward simulating the system using that control input. For Crocoddyl, we

considered the following initial guesses: “Zeros” and “Line and RNEA,” as defined in the Aligator case, and “Constants,” which
corresponds to setting z(t) = xo for all ¢ and ug equal to a constant that is equal to applying RNEA to the initial xo while
assuming that ¢(0) = 0 and zo. For PHLAME, we only considered the initial guess “Line‘, which corresponds to an initial guess
where xg is a line connecting xo and xy. Note that for our method we do not need to specify an initial guess ug.

Aligator and Croccodyl have several parameters that are specific to their implementation. First, each method relies upon
discretizing time and allow a user to specify a time discretization, d;. Second, each method allows one to include a running
cost. We choose this running cost to be the 2-norm of the input added to the 2-norm of the state with weights w,, and w,,
respectively. Third, each method allows one to include a terminal cost with weight w, . We choose this to be the 2-norm of the
difference of the final state from x;. For Aligator, we also consider the parameters fi;,;; and €;,;, where the former corresponds
to the initial value of the augmented Lagrangian penalty parameter and the latter to the solver tolerance. Lastly, for Aligator
we also add an equality constraint that enforces the desired final state x; and inequality constraints that enforce that the joint
frames are not inside any of the sphere obstacles.

As for PHLAME. First, p is the degree of the polynomial that represents the solution. Second, %k is a penalty that ensures
dynamic feasibility and was first introduced in (IT)). Third, $;,q, corresponds to the maximum “time” that the PDE has to evolve.
Fourth, only for the experiments that have obstacles (inequality constraints) we also consider the parameters k.o,s, introduced
in (A2) and ccons, introduced in (A3) which control the weight of the constraint satisfaction and the sharpness of the activation
function respectively.

In summary, for Crocoddyl in each experiment we perform a grid search of Initial guess, d;,w,,, w,, and w, . For Aligator
we search over the Initial guess, d;, Wy, Wy, Wy f, flinit and €;;. For unconstrained PHLAME, p, 5,4, and k and for constrained
PHLAME p, Spmazs K Ceons and keops.

B. Grid parameters for each Solver

This section contains all the varied parameters that we grid search over and use for the experiments in [I, Section [V]:

Parameter Grid values

Wy, [10-%,10=3,1072,107 1]

W [10-%,1073,10~2,10~1,0.0, 1, 10]
Wy [10—%,1.0, 10, 1000]

3¢ [10-2,103,10~ %]

Initial guess [Zeros, Line and RNEA, Constant]

TABLE VII: Parameter Values for Crocoddyl unconstrained

Parameter Grid values

Wy [1075,10~%,103,10" 2,10 1]

W [10-5,10—%,10~3,0.0, 1, 100, 1000]

Wyt [10—5,10—%,1.0, 10, 1000]

3t [10-2,10~ 7]

€tol 10-3,10~%,10°7

Linit 10~2,10~7,10~%

Initial guess [Zeros, Line and RNEA, Rollout and Zero, Rollout and Constant]

TABLE VIII: Parameter Values for Aligator with obstacles

Parameter Grid values

Smaz [10-%,10-3,1072,10 1, 1, 5, 10, 25, 50, 100]
k [103,10%, 105,109,107, 108, 10%, 1017]

P [5,6,7,8,9,10, 15]

Initial guess [Line]

TABLE IX: Parameter Values for PHLAME for pendulum swingup

Parameter Grid values

Smaw [10—%,10-3,102,10"1,1,2,3,4,5,6, 7, 8,9, 10, 25, 50, 100]
k [10%,10°,105,107,10%,10%,1017]

P [5,6,7,8,9,10,15]

Initial guess [Line]

TABLE X: Parameter Values for PHLAME for Kinova without obstacles

Parameter Grid values

Smax [10—%,10-3,102,10"1,1,2,3,4,5,6, 7, 8,9, 10, 25, 50, 100]
k [103,107%,10°,10%,107, 108,107, 100]

D [5,6,7,8,9,10]

Initial guess [Line]

TABLE XI: Parameter Values for PHLAME for Digit without obstacles

Parameter Grid values

Smaz [10—%,1072,10~1, 1,5, 10, 25, 50, 100]
k [10°,10%, 107, 10%, 107, 1017]

P [5,6,7,8,9,10, 15]

Ceons [1, 50, 200]

Kcons [10°,10%,107, 108, 107, 1017]
Initial guess [Line]

TABLE XII: Parameter Values for PHLAME Kinova with Constraints

Parameter Grid values

Smax [10-%,10~2,10" 1,1, 5, 10, 25, 50, 100]
k [10°,10%,107,10%, 107, 101V]

p [5,6,7,8,9,10,15]

Ccons [1, 50, 200}

Kcons [10°,10%,107,10%, 107, 10™Y]
Initial guess [Line]

TABLE XIII: Parameter Values for PHLAME for Digit with Constraints

C. Best Parameters for the Experiments

This section provides details on the best parameter set for each evaluated method in the experiments in [I, Section [V].

1) Trajectory Optimization: Kinova Arm without Obstacles

The best parameter set for PHLAME was s,,4, = 0.1,k = 10°,p = 9. The best parameter set for Crocoddyl was w, =
0.0001, w,, = 0.0001, ¢ = 0.0001, w, s = 1, and Initial Condition = “Zeros”.

2) Trajectory Optimization: Digit without Obstacles

The best parameter set for PHLAME was s;,q, = 1,k = 107,p = 6. The best parameter set for Crocoddyl was w, =
0.001, w,, = 0.0001, 6t = 0.001, w, s = 1000, and Initial Condition = “Rollout and Constant”.

3) Trajectory Optimization: Kinova Arm with Obstacles

The best parameter set for PHLAME was s,,4, = 0.1,k = 10°,p = 8, kcons = 10°, ceons = 1. The best parameter set for
Aligator was w, = 0.001,w,, = 0.0001, 6t = 0.001, w,s = 1, and Initial Condition = “Line and RNEA”, ¢;,; = 0.001, ftinit =
1077,

4) Trajectory Optimization: Digit with obstacles

For a error threshold of € = 0.05 the best parameter set for PHLAME was s,,,4, = 1.0,k = 107, P =06, kcons = 10%, Ceons =
200. For Aligator none of the parameter sets yielded a success when the allowable final state error ¢ = 0.05 as with all the
other experiments. With a larger error threshold (e = 0.25), the best parameter set for Aligator was w, = 1.0, w, = 0.01,t =
0.01,w, s = 1075, and Initial Condition = “Zeros”, €;o; = 0.001, ftinie = 1075,

(1]

(2]
(3]

(4]
(5]
(6]
(7]
(8]
(9]

REFERENCES

C. Enninful Adu, C. E. Ramos Chuquiure, B. Zhang, and R. Vasudevan, Bring the heat: Rapid trajectory optimization with pseudospectral
techniques and the affine geometric heat flow equation, 2024.

Y. Fan, “Robot motion planning via curve shortening flows,” Ph.D. dissertation, University of Illinois at Urbana-Champaign, 2021.

L. Pareschi, G. Russo, et al., “Implicit-explicit runge-kutta schemes for stiff systems of differential equations,” Recent trends in numerical
analysis, vol. 3, pp. 269-289, 2000.

S. Singh, R. P. Russell, and P. M. Wensing, “On second-order derivatives of rigid-body dynamics: Theory & implementation,” /IEEE
Transactions on Robotics, 2024.

J. Carpentier, G. Saurel, G. Buondonno, et al., “The pinocchio c++ library : A fast and flexible implementation of rigid body dynamics
algorithms and their analytical derivatives,” in 2019 IEEE/SICE International Symposium on System Integration (SII), 2019, pp. 614—-619.
S. Liu, Y. Fan, and M.-A. Belabbas, “Affine geometric heat flow and motion planning for dynamic systems,” IFAC-PapersOnLine, vol. 52,
no. 16, pp. 168-173, 2019, 11th IFAC Symposium on Nonlinear Control Systems NOLCOS 2019.

J. Carpentier and N. Mansard, “Analytical Derivatives of Rigid Body Dynamics Algorithms,” in Robotics: Science and Systems (RSS
2018), Pittsburgh, United States, Jun. 2018.

S. Singh, R. P. Russell, and P. M. Wensing, “Efficient analytical derivatives of rigid-body dynamics using spatial vector algebra,” IEEE
Robotics and Automation Letters, vol. 7, no. 2, 1776-1783, Apr. 2022.

J. P. Boyd, Chebyshev and Fourier spectral methods. Courier Corporation, 2001.

	Introduction
	Preliminaries
	The Affine Geometric Heat Flow (AGHF) Partial Differential Equation
	Homotopies and the Action Functional
	Ensuring A Coincides with the Control Input

	Solving the AGHF rapidly for high-dimensional systems
	Computing AGHF PDE Partial Derivatives Analytically
	Pseudospectral Method for solving the AGHF
	Computing the PHLAME Jacobian

	Experiments and Results
	Experimental Setup
	Robot Platforms and Comparison Methods
	Determining Success or Failure

	PHLAME AGHF Evaluation vs Original AGHF
	Scalability with Increasing N
	Trajectory Optimization: Kinova Arm without Obstacles
	Trajectory Optimization: Digit without Obstacles
	Trajectory Optimization: Kinova Arm with Obstacles
	Trajectory Optimization: Digit with obstacles

	Conclusion and Limitations
	Appendix A: Incorporating constraints into the AGHF
	Constraint Lagrangian

	Appendix B: Solving the AGHF rapidly for high dimensional systems
	Computing AGHF PDE Partial Derivatives Analytically
	Computing the PHLAME Jacobian Partial Derivatives Analytically
	Rapidly evaluating the AGHF (B5) and its Jacobian (B37)
	Rapidly evaluating the AGHF (B5)
	Rapidly Evaluating the AGHF Jacobian (B37)

	Pseudospectral Method for solving the AGHF

	Appendix C: Results Appendix
	Solver Setup
	Grid parameters for each Solver
	Best Parameters for the Experiments
	Trajectory Optimization: Kinova Arm without Obstacles
	Trajectory Optimization: Digit without Obstacles
	Trajectory Optimization: Kinova Arm with Obstacles
	Trajectory Optimization: Digit with obstacles

