
1

REFINE: Reachability-based Trajectory Design
using Robust Feedback Linearization and Zonotopes

Jinsun Liu∗, Yifei Shao∗, Lucas Lymburner, Hansen Qin, Vishrut Kaushik,
Lena Trang, Ruiyang Wang, Vladimir Ivanovic, H. Eric Tseng, and Ram Vasudevan

Abstract—Performing real-time receding horizon motion plan-
ning for autonomous vehicles while providing safety guarantees
remains difficult. This is because existing methods to accurately
predict ego vehicle behavior under a chosen controller use online
numerical integration that requires a fine time discretization and
thereby adversely affects real-time performance. To address this
limitation, several recent papers have proposed to apply offline
reachability analysis to conservatively predict the behavior of
the ego vehicle. Reachable sets can be constructed by utilizing
a simplified model whose behavior is assumed a priori to con-
servatively bound the dynamics of a full-order model. However,
it can be challenging to meticulously construct this conservative
bound. This paper proposes a framework named REFINE1 to
overcome the limitations of these existing approaches. REFINE
utilizes a parameterized robust controller that partially lin-
earizes the vehicle dynamics even in the presence of modeling
error. Zonotope-based reachability analysis is then performed
on the closed-loop, full-order vehicle dynamics to offline com-
pute the corresponding control-parameterized, over-approximate
Forward Reachable Sets (FRS). Because reachability analysis is
applied to the full-order model, the potential conservativeness
introduced by using a simplified model is avoided. The pre-
computed, control-parameterized FRS is then used online in an
optimization framework to ensure safety. The proposed method is
compared to several state-of-the-art methods during a simulation-
based evaluation on a full-size vehicle model and is demonstrated
on a 1

10
th race car robot in real hardware testing. In contrast

to existing methods, REFINE is shown to enable the vehicle to
safely navigate itself through complex environments.

Index Terms—Motion and path planning, robot safety, reach-
ability analysis, control, zonotopes.

I. INTRODUCTION

Autonomous vehicles are expected to operate in unknown
environments safely with limited sensing horizons. Because
new sensor information is received while the vehicle is mov-
ing, it is vital to plan trajectories using a receding-horizon
strategy in which the vehicle plans a new trajectory while
executing the trajectory computed in the previous planning

Jinsun Liu, Lucas Lymburner, Lena Trang, Ruiyang Wang, and Ram
Vasudevan are with the Department of Robotics, University of Michigan,
Ann Arbor, MI 48109. {jinsunl, llyburn, ltrang, ruiyangw,
ramv}@umich.edu.

Yifei Shao is with the Department of Computer and Informa-
tion Science, University of Pennsylvania, Philadelphia, PA 19104.
yishao@seas.upenn.edu.

Hansen Qin is with Latitude AI. hqin@lat.ai.
Vishrut Kaushik is with Peer Robotics. vishrut@peerrobotics.ai.
Vladimir Ivanovic and Eric Tseng are with Ford Motor Company.

{vivanovi, htseng}@ford.com.
This work is supported by the Ford Motor Company via the Ford-UM

Alliance under award N022977.
∗These two authors contributed equally to this work.
1https://roahmlab.github.io/REFINE website/

Trajectory Parameter Space

Fig. 1: REFINE first designs a robust controller to track parameterized
reference trajectories by feedback linearizing a subset of vehicle states. Then
REFINE performs offline reachability analysis using a closed-loop full-order
vehicle dynamics to construct control-parameterized, zonotope reachable sets
(shown as grey boxes) that over-approximate all possible behaviors of the
vehicle model over the planning horizon. During online planning, REFINE
computes a parameterized controller that can be safely applied to the vehicle
by solving an optimization problem, which selects subsets of pre-computed
zonotope reachable sets that are guaranteed to be collision-free. In this
figure, subsets of grey zonotope reachable sets corresponding to the trajectory
parameter shown in green ensure a collision-free path while the other two
trajectory parameters shown in pink lead to collisions with white obstacles.

iteration. It is desirable for such motion planning frameworks
to satisfy three properties: First, they should ensure that any
computed trajectory is dynamically realizable by the vehicle.
Second, they should operate in real-time so that they can react
to new environmental information. Finally, they should verify
that any computed trajectory when realized by the vehicle does
not give rise to collisions. This paper develops an algorithm to
satisfy these three requirements by designing a robust, partial
feedback linearization controller and performing zonotope-
based reachability analysis on a full-order vehicle model.

We begin by summarizing related works on trajectory
planning and discussing their potential abilities to ensure safe
performance of the vehicle in real-time. To generate safe
motion plan in real-time while satisfying vehicle dynamics,
it is critical to have accurate predictions of vehicle behavior
over the time horizon in which planning is occurring. Because
actual vehicle and actuator dynamics are nonlinear, closed-
form solutions of vehicle trajectories are incomputable, and
approximations to the vehicle dynamics are typically utilized.
For example, sampling-based methods typically discretize the
system dynamic model or state space to explore the environ-
ment and find a path, which reaches the goal location and
is optimal with respect to a user-specified cost function [1],
[2]. To model vehicle dynamics during real-time planning,
sampling-based methods apply online numerical integration
and buffer obstacles to compensate for numerical integration

https://roahmlab.github.io/REFINE_website/
h
t
t
p
s
:
/
/
r
o
a
h
m
l
a
b
.
g
i
t
h
u
b
.
i
o
/
R
E
F
I
N
E
_
w
e
b
s
i
t
e
/

2

error [3]–[5]. Ensuring that a numerically integrated trajectory
is dynamically realizable and collision-free often requires
applying a fine time discretization. This typically results in
an undesirable trade-off among dynamical feasibility, colli-
sion avoidance, and real-time operation. Similarly, Nonlinear
Model Predictive Control (NMPC) uses time discretization to
generate an approximated solution to the vehicle dynamics that
is embedded in an optimization program to compute a control
input that is dynamically realizable while avoiding obstacles
[6]–[9]. Just as in the case of sampling-based methods, NMPC
also suffers from the undesirable trade-off between safety and
real-time operation.

To avoid this undesirable trade-off, researchers have begun
to apply reachability-based analysis. These techniques rely
on over-approximating the Forward Reachable Set (FRS) of
a system. This FRS contains all possible behaviors of the
vehicle dynamics over a fixed-time horizon. One of the classic
papers that applies reachability analysis uses it to construct
an algorithm to perform online verification of a trajectory
[10]. This is done by constructing a zonotope-based, FRS
representation that includes the behavior of the ego vehicle
while it tracks this trajectory using a feedback controller. If
this FRS does not intersect with objects in the surrounding
environment, then it can be followed using the feedback
controller in a collision-free manner. Note [10] is focused on
online verification, thus it assumes the existence of a trajectory
planner and does not describe how to construct a planner
that outputs plans that can be followed safely. This online
verification layer has been extended and applied to urban
traffic situations to demonstrate its effectiveness in preventing
accidents [11], [12].

Rather than just performing the online verification of a sin-
gle trajectory, more recent techniques that rely on reachability
analysis optimize over families of FRSes that are constrained
to be collision-free. For instance, the funnel library method
[13] precomputes a finite library of over-approximative FRSes
for different maneuvers by applying Sums-of-Squares (SOS)
Programming. During run-time, the algorithm searches over
a discrete number of trajectories to identify one that can
be tracked safely. As we show in the experimental study
of this paper, precomputing a rich enough, finite library of
maneuvers and FRS to operate in complex environments can
be challenging and result in high memory consumption. To
avoid using a finite number of maneuvers, a more recent
method called Reachability-based Trajectory Design (RTD)
was proposed [14]. RTD considers a continuum of trajectories
and applies SOS programming to represent the FRS of a
dynamical system as a polynomial level set. This polynomial
level set representation can be formulated as functions of
time for collision checking [15]–[17]. Unfortunately applying
SOS optimization to compute the FRS of high dimensional
systems can be challenging. As a result, RTD relies on using
a simplified, low-dimensional nonlinear model that is assumed
to bound the behavior of a full-order vehicle model. Unfortu-
nately it is difficult to ensure that this assumption is satisfied.
More troublingly, this assumption can make the computed FRS
overly conservative because the high dimensional properties
of the full-order model are treated as disturbances within the

simplified model.
These aforementioned reachability-based approaches still

pre-specify a set of trajectories for the offline reachability
analysis. To overcome this issue, recent work has applied
a Hamilton-Jacobi-Bellman based-approach [18] to pose the
offline reachability analysis as a differential game between a
full-order model and a simplified planning model [19]. The
reachability analysis computes the tracking error between the
full-order and planning models, and an associated controller
to keep the error within the computed bound at run-time. At
run-time, one buffers obstacles by this bound, then ensures
that the planning model can only plan outside of the buffered
obstacles. This approach can be too conservative in practice
because the planning model is treated as if it is trying to escape
from the high-fidelity model.

To address the limitations of existing approaches, this
paper proposes a real-time, receding-horizon motion plan-
ning algorithm named REchability-based trajectory design
using robust Feedback lInearization and zoNotopEs (REFINE)
depicted in Figure 1 that builds on the reachability-based
approach developed in [14] by using feedback linearization
and zonotopes. This paper’s contributions are three-fold. First,
a novel parametrized partial feedback linearization controller
to regulate the closed-loop vehicle dynamics that enables
robust tracking performance even in the presence of modeling
errors. Second, a zonotope-based technique that computes a
control-parameterized, over-approximate reachable set, which
describes the behavior of the closed-loop, full-order vehicle
dynamics. Because this reachability analysis is performed on
the full-order model, potential conservativeness introduced by
using a simplified model is avoided. Third, an online planning
framework that performs control synthesis in a receding hori-
zon fashion by solving optimization problems in which the
offline computed FRS approximation is used to check against
collisions. The proposed planning framework applies to Front-
Wheel, Rear-Wheel, or All-Wheel-Drive vehicle models.

The rest of this manuscript is organized as follows: Section
II describes necessary preliminaries, and section III describes
Front-Wheel-Drive vehicle as a hybrid system. Section IV
explains trajectory parameterization and vehicle safety in
considered dynamic environments. Section V formulates the
robust partial feedback linearization controller. Section VI
describes REFINE at a high level and how to perform offline
reachability analysis using zonotopes. Section VII formulates
the online planning using an optimization program. Section
VIII describes how the proposed method is evaluated and
compared to other state-of-the-art methods in simulation and
in hardware demo on a 1/10th race car model. Section IX
discusses the applicability and limitations of the proposed
framework, and Section X concludes the paper.

II. PRELIMINARIES

This section defines notations and set representations that
are used throughout the remainder of this manuscript. Sets
and subspaces are typeset using calligraphic font. A subscript
is primarily used as an index or to describe a particular
coordinate of a vector.

3

Let R, R+ and N denote the spaces of real numbers,
real positive numbers, and natural numbers, respectively. Let
0n1×n2 denote the n1-by-n2 zero matrix. The Minkowski sum
between two sets A and A′ is A ⊕ A′ = {a + a′ | a ∈
A, a′ ∈ A′}. Given vectors α, β ∈ Rn, let [α]i denote
the i-th element of α, let sum(α) denote the summation of
all elements of α, let ∥α∥ denote the Euclidean norm of
α, let diag(α) denote the diagonal matrix with α on the
diagonal, and let int(α, β) denote the n-dimensional box
{γ ∈ Rn | [α]i ≤ [γ]i ≤ [β]i, ∀i = 1, . . . , n}. Given arbitrary
matrix A ∈ Rn1×n2 , let A⊤ be the transpose of A, let [A]i:
and [A]:i denote the i-th row and column of A respectively
for any i, and let |A| be the matrix computed by taking the
absolute value of every element in A.

Next, we introduce a subclass of polytopes, called zono-
topes, that are used throughout this paper:

Definition 1. A zonotope Z is a subset of Rn defined as

Z =

{
x ∈ Rn | x = c+

ℓ∑
k=1

βkgk, βk ∈ [−1, 1]

}
(1)

with center c ∈ Rn and ℓ generators g1, . . . , gℓ ∈ Rn.
For convenience, we denote Z as <c, G> where G =
[g1, g2, . . . , gℓ] ∈ Rn×ℓ.

Let ZO(A) denote the set of all zonotopes in some space
A. Note that an n-dimensional box is a zonotope because

int(α, β) = <
1

2
(α+ β),

1

2
diag(β − α)>. (2)

By definition the Minkowski sum of two arbitrary zonotopes
Z1 = <c1, G1> and Z2 = <c2, G2> is still a zonotope
as Z1 ⊕ Z2 = <c1 + c2, [G1, G2]>. Finally, one can define
the multiplication of a matrix A of appropriate size with a
zonotope Z = <c, G> as

AZ =

{
x ∈ Rn | x = Ac+

ℓ∑
k=1

βkAgk, βk ∈ [−1, 1]

}
.

(3)
Note that AZ is equal to the zonotope <Ac, AG>.

III. HYBRID VEHICLE MODEL

This section introduces the vehicle model that is used
throughout this manuscript while performing autonomous
planning. Because traditional tire models become intractable
when a vehicle travels at low speed, we model the vehicle as a
hybrid system [20, Section 1.2] with a high-speed and a low-
speed mode. This representation allows us to compute tight
over-approximations to the behavior of the vehicle at all speeds
as is described in Section VI. This section starts by introducing
the vehicle states and tire models, then presents vehicle
dynamics in different speed modes. It concludes by describing
the instantaneous transitions between the two modes using a
guard and reset map.

A. Vehicle States and Tire Models

The approach described in this paper can be applied to front-
wheel-drive (FWD), rear-wheel drive (RWD), or all-wheel

Fig. 2: Vehicle model with the world frame shown in black and body frame
in gray.

drive (AWD) vehicle models. However, to simplify exposition,
we focus on how the approach applies to FWD vehicles in
this manuscript. Extensions to AWD and RWD vehicles can
be found online2. Given W ⊂ R2 as the world space, we
attach a body-fixed coordinate frame on the ground plane to
the vehicle as shown in Fig. 2. This body frame’s origin is
the center of mass of the vehicle, and its axes are aligned
with the longitudinal and lateral directions of the vehicle. Let
x(t) = [wx(t), wy(t), h(t), vx(t), vy(t), r(t)]

⊤ ∈ R6 be the
state value of the hybrid vehicle model at time t, where wx(t)
and wy(t) give the position of vehicle’s center of mass in the
xy-plane of the world frame, h(t) is the heading of the vehicle
in the world frame, vx(t) and vy(t) are the longitudinal and
lateral speeds of the vehicle in its body frame, r(t) is the yaw
rate of the vehicle center of mass, and δ(t) is the steering
angle of the front tire. Note, negative longitudinal speed is
not considered in this work.

To describe the tire forces along the longitudinal and lateral
directions, we adapt tire models from [21, Chapter 4, Chapter
13]. We first define the slip ratio as

λi(t) =


rwωi(t)− vx(t)

vx(t)
, during braking

rwωi(t)− vx(t)

rwωi(t)
, during acceleration

(4)

where the ‘i’ subscript can be replaced by ‘f’ for the front
wheels or ‘r’ for the rear wheels, rw is the wheel radius, ωi(t)
is the tire-rotational speed at time t, braking corresponds to
whenever rwωi(t) − vx(t) < 0, and acceleration corresponds
to whenever rwωi(t) − vx(t) ≥ 0. We then define slip angles
of front and rear tires as

αf(t) = δ(t)−
vy(t) + lfr(t)

vx(t)
, (5)

αr(t) = −
vy(t)− lrr(t)

vx(t)
, (6)

where lf and lr are the distances from center of mass to the
front and back of the vehicle.

When the magnitudes of the slip ratio and slip angle are
below critical values, λcri and αcri, the longitudinal tire force,
Fxi(t), and lateral tire force, Fyi(t), are linear functions of the

2https://roahmlab.github.io/REFINE website/web elements/REFINE Supp
limentary generalization.pdf

https://roahmlab.github.io/REFINE_website/web_elements/REFINE_Supplimentary_generalization.pdf
h
t
t
p
s
:
/
/
r
o
a
h
m
l
a
b
.
g
i
t
h
u
b
.
i
o
/
R
E
F
I
N
E
_
w
e
b
s
i
t
e
/
w
e
b
_
e
l
e
m
e
n
t
s
/
R
E
F
I
N
E
_
S
u
p
p
https://roahmlab.github.io/REFINE_website/web_elements/REFINE_Supplimentary_generalization.pdf
l
i
m
e
n
t
a
r
y
_
g
e
n
e
r
a
l
i
z
a
t
i
o
n
.
p
d
f

4

slip ratio and slip angle, respectively. During online planning
we are able to guarantee that tire forces operate in the linear
regime as is described in supplementary material that can be
found online 3. Therefore, we make the following assumption:

Assumption 2. The absolute values of the slip ratio and angle
are bounded below their critical values (i.e., |λf(t)|, |λr(t)| <
λcri and |αf(t)|, |αr(t)| < αcri hold for all time).

Assumption 2 ensures that the longitudinal tire force can be
described as

Fxi(t) =
mgli
l

µλi(t), (7)

and the lateral tire force can be described as

Fyi(t) = cαiαi(t), (8)

with constants µ, cαi ∈ R, l = lf+lr, and g as the gravitational
acceleration constant. Note µ and cαi are referred to as surface-
adhesion coefficient and cornering stiffness respectively. Note
that in FWD vehicles, the longitudinal rear wheel tire force
has a much simpler expression:

Remark 3 ([22]). In a FWD vehicle, Fxr(t) = 0 for all t.

Note, as the vehicle speed approaches zero, the denominators
of the slip ratio (4) and slip angles (5) and (6) approach zero,
which makes applying the tire model, (7) and (8), untenable.
Thus we describe the vehicle dynamics in two modes as a
function of a critical longitudinal velocity vcri

x : high-speed (i.e.,
vx(t) > vcri

x) and low-speed (i.e., vx(t) ≤ vcri
x). Note that the

critical velocity vcri
x can be computed [23, (5) and (18)].

B. High-Speed Mode

The vehicle dynamics in the high-speed mode, which is
adapted from the standard bicycle model [22, Chapter 10.4],
are described as:

ẋ(t) =


vx(t) cosh(t)− vy(t) sinh(t)
vx(t) sinh(t) + vy(t) cosh(t)

r(t)
1
m

(
Fxf(t) + Fxr(t)

)
+ vy(t)r(t) + ∆vx(t)

1
m

(
Fyf(t) + Fyr(t)

)
− vx(t)r(t) + ∆vy(t)

1
Izz

(
lfFyf(t)− lrFyr(t)

)
+∆r(t)

 . (9)

where Izz is the vehicle’s moment of inertia and m is the
vehicle’s mass. Note: lf, lr, Izz and m are all constants and
are assumed to be known. Note that we have introduced
time-varying affine modeling errors ∆vx , ∆vy and ∆r in
(9) to account for aerodynamic-drag force [21, Section 4.2],
inaccurate state estimation, and inaccurate tire force models
that may arise in real applications. To ensure dynamics (9) is
well-posed (i.e., its solution exists and is unique) and to aid
in the development of our controller as described in Section
V, we make the following assumption:

Assumption 4. ∆vx ,∆vy ,∆r are all square-integrable
functions and are bounded (i.e., there exist real num-
bers Mvx ,Mvy ,Mr ∈ [0,+∞) such that ∥∆vx(t)∥∞ ≤
Mvx , ∥∆vy(t)∥∞ ≤Mvy , ∥∆r(t)∥∞ ≤Mr for all t).

3https://roahmlab.github.io/REFINE website/web elements/REFINE Supp
limentary tire.pdf

In Section VIII-D1, we explain how we obtain ∆u,∆v,∆r

using real-world data and interested readers can read [24]–
[26] for more systematic approaches on determining modeling
errors. Note that the steering angle of the front wheel, δ, and
the front tire rotational speed, ωf, are the inputs that one is able
to control in the real world. However, when we formulate our
controller in Section V, we begin by assuming that we can
directly control the front tire forces, Fxf and Fyf. We then
illustrate how to compute δ and ωf given Fxf and Fyf.

C. Low-Speed Mode

When vx(t) ≤ vcri
x , the vehicle dynamics in low-speed mode

is modeled using a steady-state cornering model [27, Chapter
6], [28, Chapter 5], [29, Chapter 10], which is described using
four states, [wx(t), wy(t), h(t), vx(t)]

⊤ ∈ R4, at time t. This
model ignores transients on lateral velocity and yaw rate. Note
that the dynamics of wx, wy, h and vx are the same as in
the high-speed mode; however, the steady-state corning model
describes the yaw rate and lateral speed as

vlo
y (t) =lrr

lo(t)− mlf
cαrl

vx(t)
2rlo(t) (10)

rlo(t) =
δ(t)vx(t)

l + Cusvx(t)2
(11)

with understeer coefficient

Cus =
m

l

(
lr
cαf
− lf

cαr

)
. (12)

Therefore in the low-speed mode, the dynamics of the first
four states in x remain the same as in (9), but we assign vy
and r with zero dynamics. Note that such an assignment does
not affect the evolution of the hybrid vehicle model because
the actual lateral speed and yaw rate are directly computed via
(10) and (11) in the low-speed mode.

Notice when vx(t) = vlo
y (t) = rlo(t) = 0 and longitudinal

tire forces are zero, v̇x(t) could still be nonzero due to
a nonzero ∆vx(t). To avoid this issue, we make a tighter
assumption on ∆vx(t) without violating Assumption 4:

Assumption 5. For all t such that vx(t) ∈ [0, vcri
x], |∆vx(t)| is

bounded from above by a linear function of vx(t) (i.e.,

|∆vx(t)| ≤ bpro
vx
· vx(t) + boff

vx
, if vx(t) ∈ [0, vcri

x], (13)

where bpro
vx

and boff
vx

are constants satisfying bpro
vx
· vcri

x + boff
vx
≤

Mvx). In addition, ∆vx(t) = 0 if vx(t) = 0.

D. Guard and Reset Map

Transitions between high-speed and low-speed modes are
described using the notion of guard and reset map. The
guard determines when a transition occurs and is defined
as {x(t) ∈ R6 | vx(t) = vcri

x }. When a transition occurs
at some time t, the reset map is an identity for the first
four vehicle states. If vx(t) approaches vcri

x from below (i.e.,
the system is transitioning from low to high-speed), then the
lateral speed and yaw rate are set equal to vlo

y (t) and rlo(t),
respectively. If vx(t) approaches vcri

x from above (i.e., the
system is transitioning from high to low-speed), then one
computes vlo

y (t) and rlo(t) by using (10) and (11), respectively.

https://roahmlab.github.io/REFINE_website/web_elements/REFINE_Supplimentary_tire.pdf
h
t
t
p
s
:
/
/
r
o
a
h
m
l
a
b
.
g
i
t
h
u
b
.
i
o
/
R
E
F
I
N
E
_
w
e
b
s
i
t
e
/
w
e
b
_
e
l
e
m
e
n
t
s
/
R
E
F
I
N
E
_
S
u
p
p
https://roahmlab.github.io/REFINE_website/web_elements/REFINE_Supplimentary_tire.pdf
l
i
m
e
n
t
a
r
y
_
t
i
r
e
.
p
d
f

5

IV. TRAJECTORY DESIGN AND SAFETY

REFINE is a receding-horizon trajectory planner that is able
to guarantee the safety of any returned plan. To ensure real-
time performance, REFINE optimizes over a parameterized set
of desired trajectories. This parametrization is also used by the
offline reachability analysis that is described in Section VI.
This section describes the space of parameterized trajectories
that are used online, defines safety during motion planning
via the notion of not-at-fault behavior, and makes assumptions
about the environment surrounding the ego-vehicle.

A. Trajectory Parameterization

Each trajectory plan is specified over a compact time
interval. Without loss of generality, we let this compact time
interval have a fixed duration tf. Because REFINE performs
receding-horizon planning, we make the following assumption
about the time available to construct a new plan:

Assumption 6. During each planning iteration starting from
time t0, the ego vehicle has tplan seconds to find a control
input. This control input is applied during the time interval
[t0 + tplan, t0 + tplan + tf] where tf ≥ 0 is a user-specified
constant. In addition, the state of the vehicle at time t0+ tplan

is known at time t0.

In each planning iteration, REFINE chooses a trajectory to
be followed by the ego vehicle. This trajectory is chosen from
a pre-specified continuum of trajectories, with each uniquely
determined by a trajectory parameter p ∈ P . Let P ⊂ Rnp ,
np ∈ N be a n-dimensional box int(p, p) where p, p ∈ Rnp

indicate the element-wise lower and upper bounds of p,
respectively. We define these desired trajectories as follows:

Definition 7. For each p ∈ P , a desired trajectory consists of
a function for the longitudinal speed, vdes

x (·, p) : [t0+tplan, t0+
tplan + tf] → R, a function for the heading, hdes(·, p) : [t0 +
tplan, t0 + tplan + tf] → R, and a function for the yaw rate,
rdes(·, p) : [t0 + tplan, t0 + tplan + tf] → R, that satisfy the
following properties.

1) For all p ∈ P , there exists a time instant tm ∈ [t0 +
tplan, t0+tplan+tf) after which the desired trajectory be-
gins to brake (i.e., |vdes

x (t, p)|, |hdes(t, p)| and |rdes(t, p)|
are non-increasing for all t ∈ [tm, t0 + tplan + tf]).

2) The desired trajectory eventually comes to and remains
stopped (i.e., there exists a tstop ∈ [t0+tplan, t0+tplan+tf]
such that vdes

x (t, p) = hdes(t, p) = rdes(t, p) = 0 for all
t ≥ tstop).

3) vdes
x and hdes are piecewise continuously differentiable

[30, Chapter 6, §1.1] with respect to t and p.
4) The time derivative of the heading function is equal to

the yaw rate function (i.e., rdes(t, p) = ∂
∂th

des(t, p) over
all regions that hdes(t, p) is continuously differentiable
with respect to t).

The first two properties ensure that a failsafe contingency brak-
ing maneuver is always available and the latter two properties
ensure that the tracking controller described in Section V is
well-defined. Note, sometimes we abuse notation and evaluate

a desired trajectory for t > t0 + tplan + tf. In this instance, the
value of the desired trajectory is equal to its value at tf.

B. Not-At-Fault

In dynamic environments, avoiding collision may not al-
ways be possible (e.g., a parked car can be run into). Therefore,
we instead develop a trajectory synthesis technique which
ensures that the ego vehicle is not-at-fault [5], [10], [16]:

Definition 8. The ego vehicle is not-at-fault if it is stopped, or
if it is never in collision with any obstacles while it is moving.

In other words, the ego vehicle is not responsible for a collision
if it has stopped and another vehicle collides with it. One
could use a variant of not-at-fault and require that when the
ego-vehicle comes to a stop it leaves enough time for all
surrounding vehicles to come safely to a stop as well, under the
assumption that surrounding obstacles behave rationally (i.e.,
travel at some maximum speed, have a bounded reaction time,
and begin to brake after that reaction time). We want to point
out that stopping is merely one choice that can be applied in
general as a fail-safe maneuver. In scenarios where stopping
is not always safe, for example in a railroad crossing, one
could extend Definition 8 and require that the final position
of the vehicle be outside of some location. The remainder of
the paper can be generalized to accommodate these variants
of not-at-fault; however, we use the aforementioned definition
in the interest of simplicity.

Remark 9. Under Assumption 2, neither longitudinal nor
lateral tire forces saturate (i.e., drifting cannot occur). As a
result, if the ego vehicle has zero longitudinal speed, it also
has zero lateral speed and yaw rate. Therefore in Definition 8,
the ego vehicle being stopped is equivalent to its longitudinal
speed being 0.

C. Environment and Sensing

To provide guarantees about vehicle behavior in a receding
horizon planning framework and inspired by [16, Section 3],
we define the ego vehicle’s footprint as:

Definition 10. The ego vehicle is a rigid body that lies in a
rectangle Oego := int([−0.5L,−0.5W]T , [0.5L, 0.5W]T) ⊂
W with width W > 0, length L > 0 at time t = 0. Such Oego

is called the footprint of the ego vehicle.

In addition, we define the dynamic environment in which
the ego vehicle is operating within as:

Definition 11. An obstacle is a set Oi(t) ⊂ W that the ego
vehicle cannot intersect with at time t, where i ∈ I is the
index of the obstacle and I contains finitely many elements.

The dependency on t in the definition of an obstacle allows the
obstacle to move as t varies. However, if the i-th obstacle is
static, then Oi(t) remains constant for all time. Assuming that
the ego vehicle has a maximum speed νego and all obstacles
share the same maximum speed νobs for all time, we then make
the following assumption on planning and sensing horizon.

6

Assumption 12. The ego vehicle senses all obstacles within
a sensor radius S > (tf + tplan) · (νego +νobs)+0.5

√
L2 +W 2

around its center of mass.

Assumption 12 ensures that any obstacle that can cause a
collision between times t ∈ [t0 + tplan, t0 + tplan + tf] can
be detected by the vehicle [16, Theorem 15]. Note one could
conservatively treat sensor occlusions as obstacles that travel
at the maximum obstacle speed [31], [32]. However, planning
with occlusions and uncertain behaviors of surrounding traffic
participants is beyond the scope of this work, and interested
readers may find how these are considered in [33].

V. CONTROLLER DESIGN

REFINE uses a robust controller to follow the desired
trajectories that are described in the last section. Recall that
the actual control inputs to the vehicle dynamics model are the
steering angle of the front wheel, δ, and the front tire rotational
speed, ωf. Section V-A describes how to select front tire forces
to follow a desired trajectory and Section V-B describes how
to compute a steering angle and tire rotational speed input
from these computed front tire forces.

A. Robust Controller

Because applying reachability analysis to linear systems
generates tighter approximations of the system behavior when
compared to nonlinear systems, we propose to develop a feed-
back controller that linearizes the dynamics. Unfortunately,
because vehicle dynamics in both high-speed and low-speed
modes introduced in Section III are under-actuated (i.e., the
dimension of control inputs is smaller than that of system
state), our controller is only able to partially feedback linearize
the vehicle dynamics (i.e., feedback linearize the dynamics of
a subset of the vehicle states). We also want the controller
to be robust to account for modeling errors as described in
Assumptions 4 and 5.

We start by introducing the controller on longitudinal speed
whose dynamics appears in both high-speed and low-speed
models. Recall ∥∆vx(t)∥∞ ≤ Mvx in Assumption 4. Inspired
by the controller developed in [34], we set the longitudinal
front tire force to be

Fxf(t) = −mKvx(vx(t)− vdes
x (t, p)) +mv̇des

x (t, p)+

−Fxr(t)−mvy(t)r(t) +mτvx(t, p),
(14)

where

τvx(t, p) =−
(
κvx(t, p)Mvx + ϕvx(t, p)

)
evx(t, p), (15)

κvx(t, p) =κ1,vx + κ2,vx

∫ t

t0

∥vx(s)− vdes
x (s, p)∥2ds, (16)

ϕvx(t, p) =ϕ1,vx + ϕ2,vx

∫ t

t0

∥vx(s)− vdes
x (s, p)∥2ds, (17)

evx(t, p) =vx(t)− vdes
x (t, p), (18)

with user-chosen constants Kvx , κ1,vx , κ2,vx , ϕ1,vx , ϕ2,vx ∈ R+.
Note in (14) we have suppressed the dependence on p in

Fxf(t) for notational convenience. Using (14), the closed-loop
dynamics of vx becomes:

v̇x(t) = τvx(t, p) + ∆vx(t) + v̇des
x (t, p)+

−Kvx

(
vx(t)− vdes

x (t, p)
)
.

(19)

The same control strategy can be applied to vehicle yaw
rate whose dynamics only appear in the high-speed vehicle
model. Let the lateral front tire force be

Fyf(t) = −
IzzKr

lf

(
r(t)− rdes(t, p)

)
+

Izz

lf
ṙdes(t, p)+

−IzzKh

lf

(
h(t)− hdes(t, p)

)
+

lr
lf
Fyr(t) +

Izz

lf
τr(t, p),

(20)

where

τr(t, p) =−
(
κr(t, p)Mr + ϕr(t, p)

)
er(t, p) (21)

κr(t, p) =κ1,r + κ2,r

∫ t

t0

∥∥∥∥[r(s)h(s)

]
−
[
rdes(s, p)
hdes(s, p)

]∥∥∥∥2 ds (22)

ϕr(t, p) =ϕ1,r + ϕ2,r

∫ t

t0

∥∥∥∥[r(s)h(s)

]
−
[
rdes(s, p)
hdes(s, p)

]∥∥∥∥2 ds (23)

er(t, p) =
[
Kr Kh

] [r(t)− rdes(t, p)
h(t)− hdes(t, p)

]
(24)

with user-chosen constants Kh,Kr, κ1,r, κ2,r, ϕ1,r, ϕ2,r ∈
R+. Note in (20) we have again suppressed the dependence on
p in Fyf(t) for notational convenience. Using (20), the closed-
loop dynamics of r becomes:

ṙ(t) =τr(t, p) + ∆r(t) + ṙdes(t, p)+

−Kr

(
r(t)− rdes(t, p)

)
+

−Kh

(
h(t)− hdes(t, p)

)
.

(25)

Using (20), the closed-loop dynamics of vy becomes:

v̇y(t) =
1

m

(
l

lf
Fyr(t) +

Izz

lf

(
τr(t, p) + ṙdes(t, p)+

−vx(t)r(t) + ∆vy(t)−Kr

(
r(t)− rdes(t, p)

)
+

−Kh

(
h(t)− hdes(t, p)

)))
.

(26)

In summary, the proposed controller linearizes the dynamics
of the longitudinal speed and yaw. The proposed controller
also affects the dynamics of vy, but is unable to linearize it.
As a result, the controller is only able to partially linearize the
dynamics.

Because vdes
x , rdes, and hdes depend on trajectory parameter

p, one can rewrite the closed-loop vehicle dynamics as

ẋ(t) =

{
f hi(t, x(t), p), if vx(t) > vcri

x

f lo(t, x(t), p), if vx(t) ≤ vcri
x

(27)

where dynamics of wx, wy and h are stated as the first three
dimensions in (9), closed-loop dynamics of vx is described
in (19), and closed-loop dynamics of vy and r in the high-
speed mode are presented in (26) and (25). Note that the
lateral tire force could be defined to feedback linearize the
dynamics on vy instead of r, but the resulting closed-loop
system may differ. Moreover, controlling the yaw rate may be

7

easier in real applications because r can be directly measured
by an IMU. We point out that the proposed controller provides
design flexibility in the sense that the user can manage the rate
of convergence of the linearized states by selecting the gains
within the controller.

We next illustrate that with the proposed controller, the
vehicle eventually comes to a stop in finite time. To begin, note
experimentally we observed that the vehicle quickly comes to
a stop during braking once its longitudinal speed is no larger
than 0.15[m/s]. Thus we make this assumption:

Assumption 13. Suppose vx(t) = 0.15 for some t ≥ tstop.
Then under the control inputs (14) and (20) while tracking
any desired trajectory as in Definition 7, the ego vehicle takes
at most tfstop seconds after tstop to come to a complete stop.

We use this assumption to prove that the vehicle can be
brought to a stop within a specified amount of time in the
following lemma whose proof can be found in Appendix A:

Lemma 14. Let X0 ⊂ R6 be a compact subset of initial
conditions for the vehicle dynamic model at time t0+tplan and
P be a compact set of trajectory parameters. Without loss of
generality, assume t0+tplan = 0. Let ∆vx(t) be bounded for all
t as in Assumptions 4 and 5 with constants Mvx , b

pro
vx

and boff
vx

.
Let x be a solution to the hybrid vehicle model beginning from
x0 ∈ X0 under trajectory parameter p ∈ P while applying the
control inputs (14) and (20) to track some desired trajectory
satisfying Definition 7. Assume the desired longitudinal speed
satisfies the following properties: vdes

x (0, p) = vx(0), vdes
x (t, p)

is only discontinuous at time tstop, and vdes
x (t, p) converges

to vcri
x as t converges to tstop from below. If Kvx , κ1,vx ,

ϕ1,vx are chosen such that Mvx
κ1,vxMvx+ϕ1,vx

∈ (0.15, vcri
x] and

(boff
vx
)2

4(κ1,vxMvx+ϕ1,vx−bpro
vx)

< 0.152Kvx hold, then for all p ∈ P
and x0 ∈ X0 satisfying vx(0) > 0, there exists tbrake such that
vx(t) = 0 for all t ≥ tbrake.

Note, the proof of Lemma 14 includes an explicit formula
for tbrake in (59). This lemma is crucial because it specifies the
length of time over which we should construct FRS, so that
we can verify that not-at-fault behavior can be satisfied based
on Definition 8 and Remark 9.

B. Extracting Wheel Speed and Steering Inputs
Because we are unable to directly control tire forces, it is

vital to compute wheel speed and steering angle such that the
proposed controller described in (14) and (20) is viable. Under
Assumption 2, wheel speed and steering inputs can be directly
computed in closed forms. Wheel speed to realize longitudinal
front tire force (14) can be derived from (4) and (7) as

ωf(t) =



(
lFxf(t)

µmglr
+ 1

)
vx(t)

rw
, during braking

vx(t)(
1− lFxf(t)

µmglr

)
rw

, during acceleration.

(28)
Similarly according to (5) and (8), steering input

δ(t) =
Fyf(t)

cαf
+

vy(t) + lfr(t)

vx(t)
(29)

time

Contingency Braking Maneuver
Driving Maneuver

Fig. 3: An illustration of 3 successive planning/control iterations. tplan seconds
are allotted to compute a planned trajectory. Each plan is of duration tf and
consists of a driving maneuver of duration tm and a contingency braking
maneuver. Diamonds denote the time instances where planning computations
begin and t2 − t1 = t1 − t0 = tm. Filled-in circles denote the instances
where feasible driving maneuvers are initiated. If the planning phase between
[t1, t1 + tplan] is infeasible, the contingency braking maneuver whose feasi-
bility is verified during the planning phase between [t0, t0 + tplan] is applied.

achieves the lateral front tire force in (20) when vx(t) > vcri
x .

Notice lateral tire forces do not appear in the low-speed
dynamics, but one can still control the lateral behavior of the
ego vehicle because steering input δ(t) directly controls the
yaw rate and affects the lateral velocity based on (10) and (11).
Thus to achieve desired behavior on the lateral direction, one
can set the steering input to be

δ(t) =
rdes(t)(l + Cusvx(t)

2)

vx(t)
. (30)

VI. COMPUTING AND USING THE FRS

Before delving into how we construct FRS, we briefly
describe how REFINE uses reachable sets. REFINE conserva-
tively approximates a control-parameterized FRS of the full-
order vehicle dynamics offline. Because the vehicle dynamics
are partially linearized by the controller in Section V, REFINE
is able to construct tight, over-approximatios of the FRS
using zonotopes. During online planning, REFINE performs
control synthesis in a receding horizon fashion by solving
an optimization problem in each planning iteration, where
the optimization problem computes a trajectory parameter to
navigate the ego vehicle to a waypoint while operating in a
not-at-fault manner.

As in Assumption 6, each planning iteration in REFINE is
allotted tplan > 0 to generate a plan. As depicted in Figure 3,
if a particular planning iteration begins at time t0, its goal is to
find a control policy by solving an online optimization within
tplan seconds so that the control policy can be applied during
[t0 + tplan, t0 + tplan + tf]. Because any trajectory in Definition
7 brings the ego vehicle to a stop, we partition [t0+ tplan, t0+
tplan+ tf] into [t0+ tplan, t0+ tplan+ tm) during which a driving
maneuver is tracked and [t0 + tplan + tm, t0 + tplan + tf] during
which a contingency braking maneuver is activated. Note tm
is not necessarily equal to tstop. As a result of Lemma 14, by
setting tf equal to tbrake one can guarantee that the ego vehicle
comes to a complete stop by tf.

If the planning iteration at time t0 is feasible (i.e., not-
at-fault), then the entire feasible planned driving maneuver is
applied during [t0+tplan, t0+tplan+tm). If the planning iteration
starting at time t0 is infeasible, then the braking maneuver,
whose safe behavior was verified in the previous planning
iteration, can be applied starting at t0 + tplan to bring the ego
vehicle to a stop in a not-at-fault manner. To ensure real-time
performance, tplan ≤ tm. To simplify notation, we reset time
to 0 whenever a feasible control policy is about to be applied.

Note that this form of receding horizon planning that incor-
porates a contingency maneuver (e.g., bringing the ego vehicle

8

to a stop) has been proposed by several papers [5], [10], [16],
[17]. However, in contrast to [10], our method performs real-
time, provably not-at-fault trajectory planning; and in contrast
to [17], our method uses a different representation of the
forward reachable set of the vehicle that allows for a tighter
overapproximation to the true behavior of the ego vehicle as
we illustrate in Section VIII.

This section focuses on the offline reachability analysis,
while the online planning is described in the next section. The
rest of this section begins by describing how the initial velocity
condition and trajectory parameter are appended to the vehicle
state. Next, this section describes how to perform offline
reachability analysis for the ego vehicle using zonotopes. It
then presents a linear operation called slicing that allows one to
generate a tighter FRS over-approximation for a user-specified
initial velocity condition and trajectory parameter. This section
concludes by illustrating how we account for the ego vehicle’s
footprint during reachability analysis.

A. Augmented State and Augmented Hybrid System
We begin by augmenting the initial velocity condition of

the ego vehicle and trajectory parameter into the vehicle state
x. As we show in Section VI-C, this allows us to select
subsets of the reachable set of the system during online
operation (i.e., slice the reachable set). Denote x0 = x(0) =
[(xpos

0)⊤, (xvel
0)⊤]⊤ ∈ X0 ⊂ R6 the initial condition of the

ego vehicle, consisting of xpos
0 = [wx,0, wy,0, h0]

⊤ ∈ R3

and xvel
0 = [vx,0, vy,0, r0]

⊤ ∈ R3. Then we augment the
initial velocity condition xvel

0 of the vehicle model and tra-
jectory parameter p into the vehicle state vector as xaug(t) =
[x(t)⊤, (xvel

0)⊤, p⊤]⊤ ∈ R9×P ⊂ R9+np , where the last 3+np

states are time-invariant.
Consequently, the hybrid vehicle model introduced in Sec-

tion III can be extended to an augmented hybrid system HS
that is defined in the augmented vehicle state space. The state
of HS is xaug, whose dynamics during high-speed and low-
speed modes can be written as

ẋaug(t) =



[
f hi(t, x(t), p)
0(3+np)×1

]
, if vx(t) > vcri

x

[
f lo(t, x(t), p)
0(3+np)×1

]
, if vx(t) ≤ vcri

x .

(31)

The guard of HS is defined as G = {xaug(t) ∈ R9 × P |
vx(t) = vcri

x }. Once a transition happens, HS maintains the
last 3 + np elements of xaug(t) and resets the first 6 elements
of xaug(t) in the same way as described in Section III-D.

B. Offline FRS Computation
The FRS of the ego vehicle is defined as

F([0, tf]) =
{
(wx(t), wy(t)) ∈ W | ∃x0 ∈ X0, p ∈ P,

t ∈ [0, tf] s.t. wx(t) and wy(t) are the
first two components of x(t) where x is a
solution to (27) with x(0) = x0 and

trajectory parameter p
}
.

(32)

F([0, tf]) collects all possible behavior of the hybrid vehicle
model described in Section III in the world space over time
interval [0, tf] for all possible p ∈ P and initial condition
x0 ∈ X0. Computing F([0, tf]) precisely is intractable because
the ego vehicle is modeled as a hybrid system with nonlinear
dynamics. Thus we aim to compute an over-approximation of
F([0, tf]) instead.

We begin by assuming that the initial position, xpos
0 , is at

the origin for simplicity. Note, we address non-trivial xpos
0 by

applying a coordinate transformation as is described in Section
VII-A.

Assumption 15. The initial condition space X0 = {03×1} ×
X vel

0 where X vel
0 = int(xvel

0 , xvel
0) ⊂ R3 is a 3-dimensional box

representing all possible initial velocity conditions xvel
0 of the

ego vehicle.

Because vehicles operate within a bounded range of speeds,the
above assumption is trivial to satisfy. Notice that X vel

0 is a
zonotope <cvel

0 , Gvel
0 > where cvel

0 = 1
2 (x

vel
0 +xvel

0) and Gvel
0 =

1
2diag(x

vel
0 − xvel

0).
Recall that because P is a compact np-dimensional box, it

can also be represented as a zonotope as <cp, Gp> where
cp = 1

2 (p + p) and Gp = 1
2diag(p − p). Then the set of

initial conditions for xaug(0) can be represented as a zonotope
X aug

0 = <cxaug , Gxaug> where

cxaug =


03×1

cvel
0

cvel
0

cp

 , Gxaug =


03×3 03×np

Gvel
0 03×np

Gvel
0 03×np

0np×3 Gp

 . (33)

Observe that by construction each row of Gxaug has at most
one nonzero element. Without loss of generality, we assume
Gvel

0 and Gp has no zero rows. If there was a zero row it
would mean that the corresponding dimension can only take
one value and does not need to be traced or augmented in xaug

for reachability analysis.
Next we pick a time step ∆t ∈ R+ such that tf/∆t ∈ N,

and partition the time interval [0, tf] into tf/∆t time seg-
ments, where Tj = [(j − 1)∆t, j∆t] for each j ∈ J =
{1, 2, · · · , tf/∆t}. Finally we use an open-source toolbox
CORA [35], which takes the initial condition space X aug

0 and
the augmented hybrid system HS introduced in Section VI-A,
to over-approximate the FRS in (32) by a collection of zono-
topes {Rj}j∈J over all time intervals where Rj ⊂ R9+np .
Notice that reachability analysis of a hybrid system requires
the computation of G∩Rj , which equals to Rj or ∅ depending
on whether the projection of Rj onto its dimension of vx
contains vcri

x or not. As a direct application of Theorem 3.3,
Proposition 3.7 and the derivation in Section 3.5.3 in [36], one
can conclude that xaug(t) ∈ Rj for all j ∈ J and t ∈ Tj and

F([0, tf]) ⊂
⋃
j∈J

πw(Rj) (34)

where πw : ZO(R9+np) → ZO(W) denotes the projection
operator that maps an arbitrary zonotope Rj = <cRj

, GRj
>

onto the world space W as

πw(Rj) =

〈[
[cRj

]1
[cRj]2

]
,

[
[GRj

]1:
[GRj]2:

]〉
. (35)

9

Remark 16. Note, that one does not need to apply CORA to
compute the FRS. As long as one had a tool that computed
the FRS as a set of zonoptes that satisfied (34), the results in
the remainder of the paper can be applied.

C. Slicing

The FRS over-approximation computed in the previous
subsection contains the behavior of the hybrid vehicle model
for all initial conditions in X0 and trajectory parameters in
P . Therefore using this FRS to perform obstacle avoidance
starting from a specific initial condition while following a
specific trajectory parameter may be too conservative during
online planning. Recall the hybrid vehicle model is assumed to
have zero initial position condition during the computation of
{Rj}j∈J by Assumption 15. This subsection describes how
REFINE selects subsets of the FRS by “slicing” in both the
initial velocity of the vehicle and trajectory parameter into
the FRS. This operation allows REFINE to compute tighter
zonotope reachable sets that can then be used for collision
checking during online planning.

We start by describing the following useful property of the
zonotopes Rj that make up the FRS, which follows from
Lemma 22 in [37]:

Proposition 17. Let {Rj = <cRj , GRj>}j∈J be the set of
zonotopes that over-approximates the ego vehicle’s FRS under
the augmented hybrid system HS beginning from X aug

0 . Then
for any j ∈ J , GRj

= [gRj ,1, gRj ,2, . . . , gRj ,ℓj] has only
one generator, gRj ,bk , that has a nonzero element in the k-
th dimension for each k ∈ {7, . . . , (9 + np)}. In particular,
bk ̸= bk′ for k ̸= k′.

We refer to the generators with a nonzero element in the k-
th dimension for each k ∈ {7, . . . , (9 + np)} as a sliceable
generator of Rj in the k-th dimension. In other words, for
each Rj = <cRj

, GRj
>, there are exactly 3 + np nonzero

elements in the last 3 + np rows of GRj , and none of these
nonzero elements appear in the same row or column. By
construction X aug

0 has exactly 3 + np generators, which are
each sliceable. Using Proposition 17, one can conclude that
Rj has no less than 3 + np generators (i.e., ℓ ≥ 3 + np).
Notice the last 3 + np dimensions of Rj correspond to the
augmented initial velocity condition and trajectory parameter
in xaug.

Proposition 17 is useful because it allows us to take a known
xvel
0 ∈ X vel

0 and p ∈ P and plug them into the computed
{Rj}j∈J to generate a slice of the conservative approximation
of the FRS that includes the evolution of the hybrid vehicle
dynamics model beginning from xvel

0 under trajectory param-
eter p. In particular, one can plug the initial velocity and a
trajectory parameter into the sliceable generators as described
in the following definition:

Definition 18. Let {Rj = <cRj , GRj>}j∈J be the set of
zonotopesthat over-approximates the ego vehicle’s FRS under
the augmented hybrid system HS beginning from X aug

0 where
GRj

= [gRj ,1, gRj ,2, . . . , gRj ,ℓj]. Without loss of generality,
assume that the sliceable generators of each Rj are the
first 3 + np columns of GRj . In addition, without loss of

Fig. 4: An illustration of slicing. Rj = <cRj
, [gRj ,2, · · · , gRj ,ℓj]> ⊕

{β1 · gRj ,1 | β1 ∈ [−1, 1]} is shown as the gray zonotope, where cRj

is shown as the black dot, <cRj
, [gRj ,2, · · · , gRj ,ℓj]> is shown as the

zonotope with black boundary, gRj ,1 and its negative are shown as black solid
and dashed arrows, respectively. A sliced zonotope of Rj with β1 = −2/3
is shown in green with its center depicted with a green dot.

generality assume that the sliceable generators are ordered
so that the dimension in which the non-zero element appears
is increasing. The slicing operator slice : ZO(R9+np) ×
X vel

0 × P → ZO(R9+np) is defined as

slice(Rj , x
vel
0 , p) = <cslc, [gRj ,(4+np), . . . , gRj ,ℓj]> (36)

where

cslc = cRj
+

9∑
k=7

[xvel
0](k−6) − [cRj]k

[gRj ,(k−6)]k
gRj ,(k−6)+

+

9+np∑
k=10

[p](k−9) − [cRj
]k

[gRj ,(k−6)]k
gRj ,(k−6).

(37)

To understand this definition, let’s consider plugging in only
the initial longitudinal speed vx,0 into an arbitrary zonotope
reachable set Rj = <cRj

, [gRj ,1, gRj ,2, · · · , gRj ,ℓj]>. Re-
call vx,0 is the 7th dimension in xaug, and assume gRj ,1 is
the corresponding generator whose 7th dimension is nonzero.
Notice Rj = <cRj , [gRj ,2, · · · , gRj ,ℓj]>⊕{β1 ·gRj ,1 | β1 ∈
[−1, 1]}, and vx,0 is constant due to its zero dynamics. Thus
by Proposition 17,

vx,0 = [cRj
]7 + β1 · [gRj ,1]7, (38)

which means β1 can be computed exactly. The exact value of
β1 allows us to construct a new zonotope

R′
j := <cRj

, [gRj ,2, · · · , gRj ,ℓj]>+
vx,0 − [cRj]7

[gRj ,1]7
gRj ,1 (39)

that over-approximates the vehicle behavior over time interval
Tj if the ego vehicle starts with longitudinal speed vx,0 at t =
0. As illustrated in Figure 4, R′

j is a subset of Rj . Recall we
have in total 3+np augmented states that have zero dynamics
in xaug, thus one can iteratively repeat computations in (38)
and (39) for all elements in xvel

0 and p, thus a linear operator
can be constructed as in Definition 18.

Using the argument above, one can prove the following
theorem:

Theorem 19. Let {Rj}j∈J be the set of zonotopes that over-
approximates the ego vehicle’s FRS under the augmented
hybrid system HS beginning from X aug

0 and satisfy the
statement of Definition 18. Then for any j ∈ J , x0 =
[0, 0, 0, (xvel

0)⊤]⊤ ∈ X0, and p ∈ P , slice(Rj , x
vel
0 , p) ⊂

Rj . In addition, suppose xaug is a solution to HS with initial
condition x0 and control parameter p. Then for each j ∈ J
and t ∈ Tj ,

xaug(t) ∈ slice(Rj , x
vel
0 , p). (40)

10

Theorem 19 provides a tighter over-approximation of the
vehicle behavior compared to Rj given the ego vehicle is op-
erated with some known initial speed condition and trajectory
parameter. As a result, this theorem improves the feasibility
of online planning because we now only need to ensure not-
at-fault during online planning for a particular value of initial
speed and trajectory parameter via slicing instead of directly
using Rj to ensure not-at-fault for all possible initial velocity
conditions and trajectory parameters.

D. Accounting for the Vehicle Footprint in the FRS

The conservative representation of the FRS generated in
Section VI-B only accounts for the ego vehicle’s center of
mass because HS treats the ego vehicle as a point mass. To
ensure not-at-fault behavior while planning using REFINE,
one must account for the footprint of the ego vehicle, Oego,
as in Definition 10.

Given any Rj = <cRj
, GRj

> computed in Section VI-B,
define a projection operator πh : ZO(R9+np) → ZO(R) as
πh(Rj) 7→ <[cRj]3, [GRj]3:>. Then by definition πh(Rj)
is a zonotope and it conservatively approximates of the ego
vehicle’s heading during Tj . Moreover, because πh(Rj) is a 1-
dimensional zonotope, it can be rewritten as a 1-dimensional
box int(hmid − hrad, hmid + hrad) where hmid = [cRj

]3 and
hrad = sum(|[GRj]3:|). We can then use πh to define a map
to account for vehicle footprint within the FRS:

Definition 20. Let Rj be the zonotope that over-approximates
the ego vehicle’s FRS beginning from X aug

0 for arbitrary
j ∈ J , and denote πh(Rj) as int(hmid − hrad, hmid + hrad).
Let S ⊂ W be a 2-dimensional box centered at the origin with
length

√
L2 +W 2 and width L| sin(hrad)| + W | cos(hrad)|.

Define the rotation map rot : ZO(R)→ ZO(W) as

rot
(
πh(Rj)

)
:=

[
cos(hmid) − sin(hmid)
sin(hmid) cos(hmid)

]
S. (41)

Note that rot
(
πh(Rj)

)
is a zonotope because the 2-

dimensional box S is equivalent to a 2-dimensional zono-
tope and it is multiplied by a matrix via (3). By applying
geometry, one can verify that by definition S bounds the area
that Oego = int([−0.5L,−0.5W]⊤, [0.5L, 0.5W]⊤) travels
through while rotating within the range [−hrad, hrad]. As a
result, rot

(
πh(Rj)

)
over-approximates the area over which

Oego sweeps according to πh(Rj) as shown in Fig. 5.
Because S can be represented as a zonotope with 2 gener-

ators, one can denote rot(πh(Rj)) as <crot, Grot> ⊂ R2

where Grot ∈ R2×2. Notice rot(πh(Rj)) in (41) is a set in
W rather than the higher dimensional space where Rj exists.
We extend rot(πh(Rj)) to R9+np as

ROT(πh(Rj)) :=

〈[
crot

0(7+np)×1

]
,

[
Grot

0(7+np)×2

]〉
. (42)

Using this definition, one can extend the FRS to account for
the vehicle footprint as in the following lemma whose proof
can be found in Appendix B:

Lemma 21. Let {Rj}j∈J be the set of zonotopes that over-
approximates the ego vehicle’s FRS under the augmented

Fig. 5: Rotation of the ego vehicle and its footprint within range πh(Rj). The
ego vehicle with heading equals to the mean value of πh(Rj) is bounded by
the box with solid black boundaries. The range of rotated heading is indicated
by the grey arc. The area the ego vehicle’s footprint sweeps is colored in grey,
and is bounded by box rot

(
πh(Rj)

)
with dashed black boundaries.

hybrid system HS beginning from X aug
0 . Let xaug be a solution

to HS with initial velocity xvel
0 and control parameter p and

let ξ be defined as

ξ(Rj , x
vel
0 , p) = πw

(
slice

(
Rj ⊕ ROT(πh(Rj)), x

vel
0 , p

))
.

(43)
Then ξ(Rj , x

vel
0 , p) is a zonotope and for all j ∈ J and t ∈

Tj , the vehicle footprint oriented and centered according to
xaug(t) is contained within zonotope ξ(Rj , x

vel
0 , p).

VII. ONLINE PLANNING

With the offline computed reachable sets as described in
Section VI, REFINE solves an optimization problem online
to construct not-at-fault behavior. This is done by enforcing
that the intersection between any sliced zonotope reachable
set and any obstacle is the empty set. This section begins
by taking nonzero initial position conditions into account and
formulating the optimization for online planning in REFINE
to search for a safety guaranteed control policy in real-time.
It then explains how to represent each of the constraints of
the online optimization problem in a differentiable fashion,
and concludes by describing the performance of the online
planning loop.

Before continuing we make an assumption regarding the
predictions of surrounding obstacles. Because our zonotope
reachable sets describe vehicle behavior over time intervals,
we assume that the predictions of the surrounding environment
are constructed in a similar fashion. Because prediction is not
the primary emphasis of this work, we assume that the future
position of any sensed obstacle within the sensor horizon
during [t0, t0 + tplan + tf] is conservatively known at time t0:

Assumption 22. There exists a map ϑ : J × I → ZO(W)
such that ϑ(j, i) is a zonotope and

∪t∈TjOi(t) ∩ B ((wx(t0), wy(t0)), S) ⊆ ϑ(j, i), (44)

where S is the sensing range, and B ((wx(t0), wy(t0)), S) is
the 2-dimensional closed ball with center (wx(t0), wy(t0)) and
radius S under the Euclidean norm.

11

A. Nonzero Initial Position

Recall the FRS in Section VI is computed offline while
assuming that the initial position of the ego vehicle is zero
(i.e., Assumption 15). The zonotope collection {Rj}j∈J can
be understood as a local representation of the FRS in the local
frame. This local frame is oriented at the ego vehicle’s location
[wx,0, wy,0]

⊤ ∈ W with its x-axis aligned according to the
ego vehicle’s heading h0 ∈ R, where xpos

0 = [wx,0, wy,0, h0]
⊤

gives the ego vehicle’s position [wx(t), wy(t), h(t)]
⊤ at time

t = 0 in the world frame. Similarly, ξ(Rj , x
vel
0 , p) is a local

representation of the area that the ego vehicle may occupy
during Tj in the same local frame.

Because obstacles are defined in the world frame, to gen-
erate not-at-fault trajectories, REFINE transfers the obstacle
position ϑ(j, i) from the world frame to the local frame using
a 2D rigid body transformation as

ϑloc(j, i, xpos
0) =

[
cos(h0) sin(h0)
− sin(h0) cos(h0)

](
ϑ(j, i)−

[
wx,0
wy,0

])
.

(45)

B. Online Optimization

Given the predicted initial condition of the vehicle at t = 0
as x0 = [(xpos

0)⊤, (xvel
0)⊤]⊤ ∈ R3 × X vel

0 ⊂ R6, REFINE
computes a not-at-fault trajectory by solving the following
optimization problem at each planning iteration:

min
p∈P

cost(z0, p) (Opt)

s.t. ξ(Rj , x
vel
0 , p) ∩ ϑloc(j, i, xpos

0) = ∅, ∀j ∈ J ,∀i ∈ I

where cost : R6 × P → R is a user-specified cost function
and ξ is defined as in Lemma 21. Note that the constraint
in (Opt) is satisfied if for a particular trajectory parameter
p, there is no intersection between any obstacle and the
reachable set of the ego vehicle with its footprint considered
during any time interval while following p. Note the set
intersection constraint in (Opt) is nonlinear as shown in the
next subsection. In this work, we use the open-source interior
point optimizer IPOPT [38] to solve (Opt). However, other
nonlinear optimization solvers can also be used as alternatives.

C. Representing the Constraint and its Gradient in (Opt)

The following theorem, whose proof can be found in
Appendix C, describes how to represent the set intersection
constraint in (Opt) and how to compute its directional deriva-
tive with respect to p ∈ P:

Theorem 23. There exists matrices A and B and a vector
b such that ξ(Rj , x

vel
0 , p) ∩ ϑloc(j, i, xpos

0) = ∅ if and only if
max(BA ·p−b) > 0. In addition, the directional derivative of
max(BA · p− b) with respect to p along any vector d ∈ Rnp

is maxk∈K̂([BA]k: · d) where K̂ = {k | [BA · p − b]k =
max(BA · p− b)}.

Formulas for the matrices A and B and vector b in the previous
theorem can be found in (64), (66), and (67), respectively.
Theorem 23 shows that each collision-free constraint in (Opt)
is identical to an almost-linear inequality constraint whose

Algorithm 1 REFINE Online Planning

Require: p0 ∈ P and x0 = [(xpos
0)⊤, (xvel

0)⊤]⊤ ∈ R3 ×X vel
0

1: Initialize: p∗ ← p0, t← 0
2: Loop: // Line 3 executes at the same time as Line 4-8
3: Execute p∗ during [0, tm)
4: {ϑloc(j, i, xpos

0)}(j,i)∈J×I ← SenseObstacles()
5: Try p∗ ← OnlineOpt(x0, {ϑloc(j, i, xpos

0)}(j,i)∈J×I)
// within tplan seconds

6: Catch execute failsafe maneuver, then break
7: (xpos

0 , xvel
0)← StatePrediction(x0, p

∗, tm)
8: x0 ← [(xpos

0)⊤, (xvel
0)⊤]⊤

9: If (xvel
0 /∈ X vel

0), execute failsafe maneuver and break
10: Reset t to 0
11: End

feasible set may not be convex. One can also conclude from
the proof of Theorem 23 that the evaluations of the set
intersection constraint and its gradient have linear complexity
with respect to the number of generators of Rj .

D. Online Operation

Algorithm 1 summarizes the online operations of REFINE.
In each planning iteration, the ego vehicle executes the feasible
trajectory parameter that is computed in the previous planning
iteration (Line 3). Meanwhile, SenseObstacles senses and
predicts obstacles as in Assumption 22 (Line 4) in local frame
decided by xpos

0 . (Opt) is then solved to compute a trajectory
parameter p∗ using x0 and {ϑloc(j, i, xpos

0)}(j,i)∈J×I (Line 5).
If (Opt) fails to find a feasible solution within tplan seconds,
the contingency braking maneuver whose safety is verified
in the last planning iteration is executed, and REFINE is
terminated (Line 6). In the case when (Opt) is able to find a
feasible p∗, StatePrediction predicts the state value at
t = tm based on x0 and p∗ as in Assumption 6 (Lines 7 and
8). If the predicted velocity value does not belong to X vel

0 ,
then its corresponding FRS is not available and the planning
has to stop while executing a contingency braking maneuver
(Line 9). Otherwise, we reset the time to 0 (Line 10) and start
the next planning iteration. Note Lines 4 and 7 are assumed
to execute instantaneously, but in practice the time spent for
these steps can be subtracted from tplan to ensure real-time
performance. By iteratively applying Definition 8, Lemmas
14 and 21, Assumption 22 and (45), the following theorem
holds:

Theorem 24. Suppose the ego vehicle can sense and predict
surrounding obstacles as in Assumption 22, and starts with a
not-at-fault trajectory parameter p0 ∈ P . Then by performing
planning and control as in Algorithm 1, the ego vehicle is
not-at-fault for all time.

VIII. EXPERIMENTS

This section describes the implementation and evaluation of
REFINE in simulation using a FWD, full-size vehicle model
and on hardware using an AWD, 1

10 th size race car model.

12

Readers can find a link to the software implementation4 and
videos5 online.

A. Desired Trajectories

As detailed in Section V-A, the proposed controller relies
on desired trajectories of vehicle longitudinal speed and yaw
rate satisfying Definition 7. To test the performance of the
proposed controller and planning framework, we selected 3
families of desired trajectories that are observed during daily
driving. Each desired trajectory is the concatenation of a
driving maneuver and a contingency braking maneuver. The
driving maneuver is a speed change, a direction change, or
a lane change. Moreover, each desired trajectory is param-
eterized by p = [pvx , py]

⊤ ∈ P ⊂ R2 where pvx denotes
desired longitudinal speed, and py decides desired lateral
displacement.

Assuming that the ego vehicle has initial longitudinal speed
vx,0 ∈ R at time 0, the desired trajectory for longitudinal speed
is the same for each of the 3 families of desired trajectories:

vdes
x (t, p) =

{
vx,0 +

pvx−vx,0

tm
t, if 0 < t < tm

vbrake
x (t, p), if t ≥ tm

(46)

where

vbrake
x (t, p) =


pvx + (t− tm)a

dec,

if pvx > vcri
x and tm ≤ t < tm +

vcri
x −pvx
adec

0, if pvx > vcri
x and t ≥ tm +

vcri
x −pvx
adec

0, if pvx ≤ vcri
x and t ≥ tm

(47)
with some deceleration adec < 0. Note by Definition 7, tstop
can be specified as

tstop =

{
tm +

vcri
x −pvx
adec , if pvx > vcri

x

tm, if pvx ≤ vcri
x .

(48)

The desired longitudinal speed approaches pvx linearly from
vx,0 before braking begins at time tm, then decreases to vcri

x
with deceleration adec and immediately drops down to 0 at
time tstop. Moreover, one can verify that the chosen vdes

x (t, p)
in (46) satisfies the assumptions on desired longitudinal speed
in Lemma 14.

Assuming the ego vehicle has initial heading h0 ∈ [−π, π]
at time 0, the desired heading trajectory varies among the
different trajectory families. Specifically, for the trajectory
family associated with speed change:

hdes(t, p) = h0, ∀t ≥ 0. (49)

Desired heading trajectory for the trajectory family associated
with direction change:

hdes(t, p) =

{
h0 +

pyt
2 −

pytm
4π sin

(
2πt
tm

)
, if 0 ≤ t < tm

h0 +
pytm
2 , if t ≥ tm

(50)

4https://github.com/roahmlab/REFINE
5https://drive.google.com/drive/folders/1bXl07gTnaA3rJBl7J05SL0tsfIJED

fKy?usp=sharing, https://drive.google.com/drive/folders/1FvGHuqIRQpDS5x
WRgB30h7exmGTjRyel?usp=sharing

and for the trajectory family associated with lane change:

hdes(t, p) =


h0 + hdes

1 py · e−hdes
2 (t−0.5tm)

2

,

if 0 ≤ t < tm

h0, if t ≥ tm

(51)

where e is Euler’s number, and hdes
1 and hdes

2 are user-specified
auxiliary constants that adjust the desired heading amplitude.
Illustrations of speed change and direction change maneuvers
can be found in the software repository6, and example lane
change maneuvers are illustrated in Figure 6. By Definition 7,
desired trajectory of yaw rate is set as rdes(t, p) = d

dth
des(t, p)

among all trajectory families.
In this work, tm for the speed change and direction change

trajectory families are set equal to one another. tm for the lane
change trajectory family is twice what it is for the direction
change and speed change trajectory families. This is because a
lane change can be treated as a concatenation of two direction
changes. Because we do not know which desired trajectory
ensures not-at-fault a priori, during each planning iteration,
to guarantee real-time performance, tplan should be no greater
than the smallest duration of a driving maneuver, i.e. speed
change or direction change.

B. Subdivision of Initial Set and Families of Trajectories

In practice, CORA may generate overly conservative rep-
resentations for the FRS if the initial condition set is large.
To address this challenge, we partition X0 and P , and we
over-approximate FRS beginning from each element in this
partition. Note we could still apply REFINE as in Algorithm
1. However in Line 5, multiple optimizations of the form
(Opt) must be solved in parallel. Each of these optimiza-
tion problems optimizes over a unique partition element that
contains initial condition x0. p∗ is set to be the feasible
trajectory parameter that achieves the minimum cost function
value among these optimizations. Similarly, because we have
multiple families of desired trajectories that are each param-
eterized in distinct ways as described in Section VIII-A, we
extend REFINE just as in the instance of having a partition of
the initial condition set. In this way REFINE can be applied
to optimize over multiple families of desired trajectories to
generate not-at-fault behavior. Note that the planning horizon
tf can vary between different elements in the partition.

C. Simulation on an FWD Model

This subsection describes the evaluation on REFINE using
a highway-like simulation. In particular, this subsection de-
scribes in order the simulation environment and task, REFINE
implementation details, other benchmarked methods, and the
evaluation results.

1) Simulation Environment and Task: We evaluate the
performance on 1000 randomly generated 3-lane highway sce-
narios in which the same full-size, FWD vehicle is expected to
autonomously navigate through dynamic traffic for 1[km] from
a fixed initial condition. All lanes of all highway scenarios

6https://github.com/roahmlab/REFINE/blob/main/Rover Robot Implement
ation/README.md#1-desired-trajectories

https://github.com/roahmlab/REFINE
h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
r
o
a
h
m
l
a
b
/
R
E
F
I
N
E
https://drive.google.com/drive/folders/1bXl07gTnaA3rJBl7J05SL0tsfIJEDfKy?usp=sharing
h
t
t
p
s
:
/
/
d
r
i
v
e
.
g
o
o
g
l
e
.
c
o
m
/
d
r
i
v
e
/
f
o
l
d
e
r
s
/
1
b
X
l
0
7
g
T
n
a
A
3
r
J
B
l
7
J
0
5
S
L
0
t
s
f
I
J
E
D
https://drive.google.com/drive/folders/1bXl07gTnaA3rJBl7J05SL0tsfIJEDfKy?usp=sharing
f
K
y
?
u
s
p
=
s
h
a
r
i
n
g
https://drive.google.com/drive/folders/1FvGHuqIRQpDS5xWRgB30h7exmGTjRyel?usp=sharing
h
t
t
p
s
:
/
/
d
r
i
v
e
.
g
o
o
g
l
e
.
c
o
m
/
d
r
i
v
e
/
f
o
l
d
e
r
s
/
1
F
v
G
H
u
q
I
R
Q
p
D
S
5
x
https://drive.google.com/drive/folders/1FvGHuqIRQpDS5xWRgB30h7exmGTjRyel?usp=sharing
W
R
g
B
3
0
h
7
e
x
m
G
T
j
R
y
e
l
?
u
s
p
=
s
h
a
r
i
n
g
https://github.com/roahmlab/REFINE/blob/main/Rover_Robot_Implementation/README.md#1-desired-trajectories
h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
r
o
a
h
m
l
a
b
/
R
E
F
I
N
E
/
b
l
o
b
/
m
a
i
n
/
R
o
v
e
r
_
R
o
b
o
t
_
I
m
p
l
e
m
e
n
t
https://github.com/roahmlab/REFINE/blob/main/Rover_Robot_Implementation/README.md#1-desired-trajectories
a
t
i
o
n
/
R
E
A
D
M
E
.
m
d
#
1
-
d
e
s
i
r
e
d
-
t
r
a
j
e
c
t
o
r
i
e
s

13

Fig. 6: Examples of hdes(t, p) and rdes(t, p) to achieve lane changes with vx,0 = 1.0 [m/s], tm = 3.0 [s], hdes
1 = 20

27
, hdes

2 = 27
10

, and py taking values of
-0.4 and 0.8 from top to bottom. Note pvx is set as vx,0 to maintain the vehicle longitudinal speed before tm among both examples.

share the same lane width as 3.7[m]. Each highway scenario
contains up to 24 moving vehicles and up to 5 static obstacles.
They are all generated from random locations and treated
as obstacles to the planning method. Moreover, each moving
vehicle maintains its lane and initial speed up to 25[m/s] for
all time. Because of the randomness, there is no guarantee that
the ego vehicle has a path to navigate to the goal. Such cases
allow us to verify whether the tested methods can keep the
ego vehicle safe even in infeasible scenarios. Parameters of
the ego vehicle can be found in the software implementation
README7.

During each planning iteration, all evaluated methods use
the same high-level planner. This high-level planner generates
waypoints by first choosing the lane on which the nearest
obstacle ahead has the largest distance from the ego vehicle.
Subsequently, it picks a waypoint that is ahead of the ego
vehicle and stays along the center line of the chosen lane. The
cost function in (Opt) or in any of the evaluated optimization-
based motion planning algorithms is set to be the Euclidean
distance between the waypoint generated by the high-level
planner and the predicted vehicle location based on initial state
x0 and decision variable p. All simulations are implemented
and evaluated in MATLAB R2022a and C++17 on a laptop
with an Intel i7-9750H processor and 16GB of RAM.

2) REFINE Simulation Implementation: Parameters of
REFINE’s controller are chosen to satisfy the conditions in
Lemma 14 and can be found in the software implementation
README8. REFINE tracks families of desired trajectories as
described in Section VIII-A with P = {(pvx , py) ∈ [5, 30] ×
[−0.8, 0.8] | pvx = vx,0 if py ̸= 0}, adec = −5.0[m/s2],
hdes
1 = 6

√
2e

11 and hdes
2 = 121

144 . The duration tm of driving
maneuvers for each trajectory family is 3[s] for speed change,
3[s] for direction change and 6[s] for lane change, therefore
tplan is set to be 3[s]. As discussed in Section VIII-B, during
offline computation, we evenly partition the first and second

7https://github.com/roahmlab/REFINE/blob/main/Full Size Vehicle Simu
lation/README.md#vehicle-and-control-parameters

8https://github.com/roahmlab/REFINE/blob/main/Full Size Vehicle Simu
lation/README.md#vehicle-and-control-parameters

dimensions of P into intervals based on the initial condition of
longitudinal speed. For each partition element, tf is assigned
to be the maximum possible value of tbrake as computed in
(59) in which tfstop is by observation no greater than 0.1[s].
An over-approximation of the FRS is computed for every
partition element of P using CORA with ∆t as 0.015[s],
0.010[s], 0.005[s] and 0.001[s]. Note, that we choose these
different values of ∆t to highlight how this choice affects the
performance of REFINE.

3) Other Implemented Methods: We compare REFINE
against several state-of-the-art trajectory planning methods: a
baseline zonotope reachable set method, a Sum-of-Squares-
based RTD (SOS-RTD) method, and an NMPC method.

The first trajectory planning method that we implement is
a baseline zonotope-based reachability method that selects a
finite number of possible trajectories rather than a continuum
of possible trajectories as REFINE does. This baseline method
is an extension of the methods described in [10], [13]. Instead
of planning over a continuous trajectory parameter space,
the baseline method selects from among a discrete trajectory
parameter space made up of a finite number of trajectory
parameters. In particular, the baseline method computes a
collection of zonotope reachable sets for each element in the
discrete trajectory parameter space offline, and during online
operation searches through the discrete trajectory parameter
space until a feasible solution is found such that the cor-
responding zonotope reachable sets are verified to have no
intersection with any obstacles over the planning horizon.
The baseline method computes zonotope reachable sets using
CORA with ∆t = 0.010[s] over a sparse discrete trajectory
parameter space P sparse := {(pvx , py) ∈ {5, 5.1, 5.2, . . . , 30}×
{0, 0.4} | pvx = vx,0 if py ̸= 0} and a dense discrete trajectory
parameter space Pdense := {(pvx , py) ∈ {5, 5.1, 5.2, . . . , 30}×
{0, 0.04, 0.08, . . . , 0.8} | pvx = vx,0 if py ̸= 0}. We use P sparse

and Pdense to illustrate the challenges associated with applying
this baseline method in terms of computation time, memory
consumption, and the ability to robustly travel through com-
plex simulation environments. Note during online planning,
the search procedure over the provided discrete control space

https://github.com/roahmlab/REFINE/blob/main/Full_Size_Vehicle_Simulation/README.md#vehicle-and-control-parameters
h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
r
o
a
h
m
l
a
b
/
R
E
F
I
N
E
/
b
l
o
b
/
m
a
i
n
/
F
u
l
l
_
S
i
z
e
_
V
e
h
i
c
l
e
_
S
i
m
u
https://github.com/roahmlab/REFINE/blob/main/Full_Size_Vehicle_Simulation/README.md#vehicle-and-control-parameters
l
a
t
i
o
n
/
R
E
A
D
M
E
.
m
d
#
v
e
h
i
c
l
e
-
a
n
d
-
c
o
n
t
r
o
l
-
p
a
r
a
m
e
t
e
r
s
https://github.com/roahmlab/REFINE/blob/main/Full_Size_Vehicle_Simulation/README.md#vehicle-and-control-parameters
h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
r
o
a
h
m
l
a
b
/
R
E
F
I
N
E
/
b
l
o
b
/
m
a
i
n
/
F
u
l
l
_
S
i
z
e
_
V
e
h
i
c
l
e
_
S
i
m
u
https://github.com/roahmlab/REFINE/blob/main/Full_Size_Vehicle_Simulation/README.md#vehicle-and-control-parameters
l
a
t
i
o
n
/
R
E
A
D
M
E
.
m
d
#
v
e
h
i
c
l
e
-
a
n
d
-
c
o
n
t
r
o
l
-
p
a
r
a
m
e
t
e
r
s

14

is biased to select the same trajectory parameter that worked
in the prior planning iteration or to search first from trajectory
parameters that are close to one that worked in the previous
planning iteration.

The SOS-RTD method [14] plans a controller that also
tracks the same families of parametrized trajectories as
REFINE uses to achieve speed change, direction change and
lane change maneuvers with braking maneuvers as described
in Section VIII-A. SOS-RTD offline approximates the FRS by
solving a series of polynomial optimizations using Sum-of-
Squares so that the FRS can be over-approximated as a union
of superlevel sets of polynomials over successive time intervals
of duration 0.1[s] [14]. Computed polynomial FRS are further
expanded to account for footprints of other vehicles offline
in order to avoid buffering each obstacle with discrete points
online [17]. During online optimization, SOS-RTD plans every
3[s] and uses the same cost function as REFINE does, but
checks collision against obstacles by enforcing that no obstacle
has its center stay inside the FRS approximation during any
time interval.

The NMPC method does not perform offline reachability
analysis. Instead, it directly computes the control inputs that
are applicable for 3 seconds by solving an optimal con-
trol problem. This optimal control problem is solved using
GPOPS-II [39] in a receding horizon fashion with a replanning
rate of 1/3[Hz]. Note that we gave this NMPC method 1000
IPOPT iterations to find a solution and did not require that
it generate a solution within 3 seconds. The NMPC method
conservatively ensures collision-free trajectories by covering
the footprints of the ego vehicle and all obstacles with two
partially overlapping balls, and requiring that no ball of the
ego vehicle intersects with any ball of any obstacle at discrete
time instances over the planning horizon. Notice during each
online planning iteration, the NMPC method does not need
pre-defined desired trajectories for solving control inputs.
Moreover, it does not require the planned control inputs to
stop the vehicle by the end of the planning horizon as the
other three methods do.

4) Evaluation Criteria: We evaluate each implemented
trajectory planning method in several ways as summarized
in Table I. First, we report the ratio that each planning
method either came safely to a stop (in a not-at-fault manner),
crashed, or successfully navigated through the scenario. Note
a scenario is terminated when one of those three conditions is
satisfied. Second, we report the average travel speed during all
scenarios. Third, we report the average and maximum planning
time over all scenarios. Finally, we report on the size of the
pre-computed reachable set.

5) Results: REFINE achieves the highest success rate
among all evaluated methods and has no crashes. The success
rate of REFINE converges to 84% as the value of ∆t decreases
because the FRS approximation becomes tighter with denser
time discretization. However as the time discretization be-
comes finer, memory consumption grows larger because more
zonotopes are used to over-approximate FRS. For the same
reason, the solving time also increases and begins to exceed
the allotted planning time. According to our simulation, we
see that ∆t = 0.010[s] results in a high enough success rate

while maintaining a planning time no greater than 3[s].
The baseline method with P sparse shares almost the same

memory consumption as REFINE with ∆t = 0.005[s], but
results in a much lower success rate and smaller average travel
speed. When the baseline method runs over Pdense, its success
rate is increased, but still smaller than that of REFINE. More
troublingly, its memory consumption increases to 9.1 GB.
Both baseline methods(P sparse and Pdense) are unable to finish
online planning within 3[s].

Compared to REFINE, SOS-RTD completes online plan-
ning faster and can also guarantee vehicle safety with a similar
average travel speed. However, SOS-RTD needs 2.4 GB to
store its polynomial reachable sets. Its success rate is only 64%
because the polynomial reachable sets are more conservative
than the zonotope reachable sets. In particular, we observe
that zonotope reachable sets generated by REFINE are on
average 9.46%, 19.69%, and 20.84% tighter than polynomial
reachable sets generated by SOS-RTD for speed change,
direction change, and lane change maneuvers, respectively. We
computed this numbers by evaluating the area of the sliced
FRS at 100 random desired trajectory parameters for each of
the three families.

When the NMPC method is utilized for motion planning,
the ego vehicle achieves a similar success rate as SOS-RTD,
but crashes occur 29% of the time. NMPC method achieves a
higher average travel speed of the ego vehicle when compared
to the other three methods. More aggressive controls can allow
the ego vehicle to drive closer to the obstacles at a higher
speed, but can make subsequent obstacle avoidance difficult.
The NMPC method uses 40.89[s] on average to compute
a solution, which makes real-time path planning untenable.
Finally, note that despite searching over a larger space of
control inputs, NMPC has a lower success rate than REFINE.

Figure 7 illustrates the performance of three methods in
the same scene at three different time instances. In Figure
7a, because REFINE gives a tight approximation of the ego
vehicle’s FRS using zonotopes, the ego vehicle is able to
first bypass static vehicles in the top lane from t = 24[s]
to t = 30[s], then switch to the top lane and bypass vehicles
in the middle lane from t = 30[s] to t = 36[s]. In Figure 7b
SOS-RTD is used for planning. In this case the ego vehicle
bypasses the static vehicles in the top lane from t = 24[s]
to t = 30[s]. However because online planning becomes
infeasible due to the conservatism of polynomial reachable
sets, the ego vehicle executes the braking maneuver to stop
itself t = 30[s] to t = 36[s]. In Figure 7c because NMPC is
used for planning, the ego vehicle drives at a faster speed and
arrives at 600[m] before the other two methods. Because the
NMPC method only enforces collision avoidance constraints
at discrete time instances, the ego vehicle ends up with a crash
at t = 24[s] though NMPC claims to find a feasible solution
for the planning iteration at t = 21[s].

D. Real World Experiments

REFINE was also implemented in C++17 and tested in
the real world using a 1

10 th All-Wheel-Drive car-like robot,
Rover, based on a Traxxas RC platform. The Rover is equipped

15

Method Safely Stop Crash Success Average Travel Speed Solving Time of Online Planning Memory(Average, Maximum)
Baseline (sparse, ∆t = 0.010) 38% 0% 62% 22.3572[m/s] (2.03[s], 4.15[s]) 980 MB
Baseline (dense, ∆t = 0.010) 30% 0% 70% 23.6327[m/s] (12.42[s], 27.74[s]) 9.1 GB

SOS-RTD 36% 0% 64% 24.8049[m/s] (0.05[s], 1.58[s]) 2.4 GB
NMPC 3% 29% 68% 27.3963[m/s] (40.89[s], 534.82[s]) N/A

REFINE (∆t = 0.015) 27% 0% 73% 23.2452[m/s] (0.34[s], 0.95[s]) 488 MB
REFINE (∆t = 0.010) 17% 0% 82% 24.8311[m/s] (0.52[s], 1.57[s]) 703 MB
REFINE (∆t = 0.005) 16% 0% 84% 24.8761[m/s] (1.28[s], 4.35[s]) 997 MB
REFINE (∆t = 0.001) 16% 0% 84% 24.8953[m/s] (6.48[s], 10.78[s]) 6.4 GB

TABLE I: Summary of performance of various tested techniques on the same 1000 simulation environments.

t=
24

.0
0

[s
]

t=
30

.0
0

[s
]

600 650 700 750 800 850 900 950

t=
36

.0
0

[s
]

(a) REFINE utilized.

t=
24

.0
0

[s
]

t=
30

.0
0

[s
]

600 650 700 750 800 850 900 950

t=
39

.0
0

[s
]

(b) SOS-RTD utilized.

t=
21

.0
0

[s
]

t=
22

.5
0

[s
]

600 650 700 750 800 850 900 950

t=
24

.0
0

[s
]

(c) NMPC utilized.

Fig. 7: An illustration of the performance of REFINE, SOS-RTD, and NMPC on the same simulated scenario. In this instance REFINE successfully navigates
the ego vehicle through traffic (top three images), SOS-RTD stops the ego vehicle to avoid collision due to the conservatism of polynomial reachable sets
(middle three images), and NMPC crashes the ego vehicle even though its online optimization claims that it has found a feasible solution (bottom three
images). In each set of images, the ego vehicle and its trajectory are colored in black. Zonotope reachable sets for REFINE and polynomial reachable sets
for SOS-RTD are colored in green. Other vehicles are obstacles and are depicted in white. If an obstacle is moving, then it is plotted at 3 time instances t,
t+ 0.5 and t+ 1 with increasing transparency. Static vehicles are only plotted at time t.

with a front-mounted Hokuyo UST-10LX 2D lidar that has
a sensing range of 10[m] and a field of view of 270◦.
The Rover is equipped with a VectorNav VN-100 IMU unit
which publishes data at 800Hz. Sensor drivers, state estimator,
obstacle detection, and the proposed controller are run on
an NVIDIA TX-1 onboard computer. A standby laptop with
an Intel i7-9750H processor and 32GB of RAM is used for
localization, mapping, and trajectory planning. The rover and
the standby laptop communicate over wifi using ROS [40].

The desired trajectories on the Rover are parameterized with
P = {(pvx , py) ∈ [0.05, 2.05] × [−1.396, 1.396] | pvx =
vx,0 if py ̸= 0}, adec = −1.5[m/sec2], hdes

1 = 20
27 and

hdes
2 = 27

10 as described in Section VIII-A. The duration tm of
driving maneuvers for each trajectory family is set to 1.5[s]
for speed change, 1.5[s] for direction change, and 3[s] for lane
change, thus planning time for real-world experiments is set
as tplan = 1.5[s]. The parameter space P is evenly partitioned
along its first and second dimensions into small intervals based

16

0 0.5 1 1.5 2

v
x
 [m/s]

0

0.5

1
v_

x [m
/s

2] collected
upper bound

Fig. 8: An illustration of the modeling error along the dynamics of vx.
Collected ∆vx (t) is bounded by Mvx = 1.11 for all time. Whenever
vx(t) ≤ vcri

x = 0.5, ∆vx (t) is bounded by b
pro
vx vx(t) + boff

vx with b
pro
vx = 1.2

and boff
vx = 0.51.

on the initial condition of longitudinal speed. For each partition
element, tf is set equal to the maximum possible value of tbrake
as computed in (59) in which tfstop is by observation no greater
than 0.1[s]. The FRS of the Rover for every partition element
of P is overapproximated using CORA with ∆t = 0.01[s].
During online planning, a waypoint is selected in real-time
using Dijkstra’s algorithm [41], and the cost function of (Opt)
is set in the same way as we do in simulation.

The robot model, environment sensing, and state estimation
play key roles in real-world experiments. In the rest of this
subsection, we describe how to bound the modeling error in (9)
and summarize the real-world experiments. Details regarding
Rover model parameters, the controller parameters, how the
Rover performs localization, mapping, and obstacle detection
and how we perform system identification of the tire models
can be found in our software implementation README9.

1) State Estimation and System Identification on Modeling
Error in Vehicle Dynamics: The modeling errors in the dy-
namics (9) arise from ignoring aerodynamic drag force and
the inaccuracies of state estimation and the tire models. We
use the data collected to fit the tire models to identify the
modeling errors ∆vx , ∆vy , and ∆r.

We compute the model errors as the difference between the
actual accelerations collected by the IMU and the estimation
of applied accelerations computed via (9) in which modeling
errors are treated as zeros and tire forces are calculated via (7)
and (8). The estimation of applied accelerations is computed
using the estimated system states via an Unscented Kalman
Filter (UKF) [42], which treats SLAM results, IMU readings,
and encoding information of wheel and steering motors as
observed outputs of the Rover model. The robot dynamics that
UKF uses to estimate the states is the high-speed dynamics
(9) with zero modeling errors. Note the UKF state estimator
is still applicable in the low-speed case except the estimation
of v and r are ignored. To ensure ∆vx , ∆vy and ∆r are square
integrable, we set ∆vx(t) = ∆vy(t) = ∆r(t) = 0 for all
t ≥ tbrake where tbrake is computed in Lemma 14. As shown in
Figure 8, bounding parameters Mvx , Mvy , and Mr are selected
to be the maximum value of |∆vx(t)|, |∆vy(t)|, and |∆r(t)|
respectively over all time, and bpro

vx and boff
vx

are generated by
bounding |∆vx(t)| from above when vx(t) ≤ vcri

x .
2) Demonstration: The Rover was tested indoors under the

proposed controller and planning framework in 6 small trials

9https://github.com/roahmlab/REFINE/blob/main/Rover Robot Implement
ation/README.md

and 1 loop trial10. In every small trail, up to 11 identical
0.3× 0.3× 0.3[m]3 cardboard cubes were placed in the scene
before the Rover began to navigate itself. The Rover was not
given prior knowledge of the obstacles for each trial. Figure
9 illustrates the scene in the 6th small trial and illustrates
REFINE’s performance. The zonotope reachable sets over-
approximate the trajectory of the Rover and never intersect
with obstacles.

In the loop trial, the Rover was required to perform 3
loops, and each loop is about 100[m] in length. In the first
loop of the loop trial, no cardboard cube was placed in the
loop, while in the last two loops the cardboard cubes were
randomly thrown at least 5[m] ahead of the running Rover
to test its maneuverability and safety. During the loop trial,
the Rover occasionally stopped because a randomly thrown
cardboard cube might be close to a waypoint or the end of
an executing maneuver. In such cases, because the Rover was
able to eventually locate obstacles more accurately when it was
stopped, the Rover began a new planning iteration immediately
after stopping and passed the cube when a feasible plan with
safety guaranteed was found.

For all 7 real-world testing trials, the Rover either safely
finishes the given task, or stops itself before running into an
obstacle if no clear path is found. The Rover is able to finish
all computation of a planning iteration within 0.4021[s] on
average and 0.6545[s] in maximum, which are both smaller
than tplan = 1.5[s], thus real-time performance is achieved.

IX. APPLICABILITY AND LIMITATIONS

REFINE is applicable to FWD, RWD, and AWD vehicle
models. Note that REFINE may not work well for desired
trajectories that contains large jumps or oscillations because
this may result in zonotope reachable sets that are too large
to be useful. In addition, REFINE relies on deterministic
information about the environment. In the case when positions
and predictions of surrounding obstacles are described in a
probabilistic fashion, the planning behavior of REFINE could
be conservative because it would generate trajectory plans that
avoid all possible locations of all surrounding obstacles even
those with low probability.

X. CONCLUSION

This work presents REFINE, a trajectory design framework
using zonotope reachable sets. A robust controller is designed
to partially linearize the full-order vehicle dynamics with mod-
eling error. Zonotope-based reachability analysis is performed
on the closed-loop vehicle dynamics for FRS computation,
and achieves less conservative FRS approximation than that
of the traditional reachability-based approaches. During online
planning, this FRS is “sliced” to identify a trajectory that can
be followed in a collision-free fashion. Tests on a full-size
vehicle model in simulation and a 1/10th scale race car show
that the proposed method is able to safely navigate the vehicle
through random environments in real-time and outperforms all
evaluated state-of-the-art safe planning methods.

10https://drive.google.com/drive/folders/1FvGHuqIRQpDS5xWRgB30h7ex
mGTjRyel?usp=sharing

https://github.com/roahmlab/REFINE/blob/main/Rover_Robot_Implementation/README.md
h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
r
o
a
h
m
l
a
b
/
R
E
F
I
N
E
/
b
l
o
b
/
m
a
i
n
/
R
o
v
e
r
_
R
o
b
o
t
_
I
m
p
l
e
m
e
n
t
https://github.com/roahmlab/REFINE/blob/main/Rover_Robot_Implementation/README.md
a
t
i
o
n
/
R
E
A
D
M
E
.
m
d
https://drive.google.com/drive/folders/1FvGHuqIRQpDS5xWRgB30h7exmGTjRyel?usp=sharing
h
t
t
p
s
:
/
/
d
r
i
v
e
.
g
o
o
g
l
e
.
c
o
m
/
d
r
i
v
e
/
f
o
l
d
e
r
s
/
1
F
v
G
H
u
q
I
R
Q
p
D
S
5
x
W
R
g
B
3
0
h
7
e
x
https://drive.google.com/drive/folders/1FvGHuqIRQpDS5xWRgB30h7exmGTjRyel?usp=sharing
m
G
T
j
R
y
e
l
?
u
s
p
=
s
h
a
r
i
n
g

17

(a) (b)

Fig. 9: An illustration of the performance of REFINE during the 6th real-world trial. The rover was able to navigate itself to the goal in red through randomly
thrown white cardboard cubes as shown in (a). Online planning using zonotope reachable sets is illustrated in (b) in which trajectory of the Rover is shown
from gray to black along time, goal is shown in red, and the zonotope reachable sets at different planning iterations are colored in green.

REFERENCES

[1] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic plan-
ning,” The international journal of robotics research, vol. 20, no. 5,
pp. 378–400, 2001.

[2] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching
tree: A fast marching sampling-based method for optimal motion
planning in many dimensions,” The International journal of robotics
research, vol. 34, no. 7, pp. 883–921, 2015.

[3] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning:
A review,” Ieee access, vol. 2, pp. 56–77, 2014.

[4] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
[5] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How,

“Real-time motion planning with applications to autonomous urban
driving,” IEEE Transactions on control systems technology, vol. 17,
no. 5, pp. 1105–1118, 2009.

[6] T. M. Howard and A. Kelly, “Optimal rough terrain trajectory genera-
tion for wheeled mobile robots,” The International Journal of Robotics
Research, vol. 26, no. 2, pp. 141–166, 2007.

[7] P. Falcone, F. Borrelli, J. Asgari, H. Tseng, and D. Hrovat, “Low
complexity mpc schemes for integrated vehicle dynamics control
problems,” in 9th international symposium on advanced vehicle control
(AVEC), 2008.

[8] C. Urmson, J. Anhalt, D. Bagnell, et al., “Autonomous driving in
urban environments: Boss and the urban challenge,” Journal of Field
Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[9] J. Wurts, J. L. Stein, and T. Ersal, “Collision imminent steering using
nonlinear model predictive control,” in 2018 Annual American Control
Conference (ACC), IEEE, 2018, pp. 4772–4777.

[10] M. Althoff and J. M. Dolan, “Online verification of automated road
vehicles using reachability analysis,” IEEE Transactions on Robotics,
vol. 30, no. 4, pp. 903–918, 2014.

[11] C. Pek, S. Manzinger, M. Koschi, and M. Althoff, “Using online
verification to prevent autonomous vehicles from causing accidents,”
Nature Machine Intelligence, vol. 2, no. 9, pp. 518–528, 2020.

[12] S. Manzinger, C. Pek, and M. Althoff, “Using reachable sets for
trajectory planning of automated vehicles,” IEEE Transactions on
Intelligent Vehicles, vol. 6, no. 2, pp. 232–248, 2020.

[13] A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust
feedback motion planning,” The International Journal of Robotics
Research, vol. 36, no. 8, pp. 947–982, 2017.

[14] S. Kousik, S. Vaskov, F. Bu, M. Johnson-Roberson, and R. Vasude-
van, “Bridging the gap between safety and real-time performance in
receding-horizon trajectory design for mobile robots,” The Interna-
tional Journal of Robotics Research, vol. 39, no. 12, pp. 1419–1469,
2020.

[15] S. Kousik, S. Vaskov, M. Johnson-Roberson, and R. Vasudevan, “Safe
trajectory synthesis for autonomous driving in unforeseen environ-
ments,” in ASME 2017 Dynamic Systems and Control Conference,
American Society of Mechanical Engineers Digital Collection, 2017.

[16] S. Vaskov, H. Larson, S. Kousik, M. Johnson-Roberson, and R.
Vasudevan, “Not-at-fault driving in traffic: A reachability-based ap-
proach,” in 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), IEEE, 2019, pp. 2785–2790.

[17] S. Vaskov, S. Kousik, H. Larson, et al., “Towards provably not-at-
fault control of autonomous robots in arbitrary dynamic environments,”
arXiv preprint arXiv:1902.02851, 2019.

[18] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-jacobi
reachability: A brief overview and recent advances,” in 2017 IEEE
56th Annual Conference on Decision and Control (CDC), IEEE, 2017,
pp. 2242–2253.

[19] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J. Tomlin,
“Fastrack: A modular framework for fast and guaranteed safe motion
planning,” in 2017 IEEE 56th Annual Conference on Decision and
Control (CDC), IEEE, 2017, pp. 1517–1522.

[20] J. Lunze and F. Lamnabhi-Lagarrigue, Handbook of hybrid systems
control: theory, tools, applications. Cambridge University Press, 2009.

[21] A. G. Ulsoy, H. Peng, and M. Çakmakci, Automotive control systems.
Cambridge University Press, 2012.

[22] R. N. Jazar, Vehicle dynamics: theory and application. Springer, 2008.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-0-
387-74244-1 2.

[23] T.-Y. Kim, S. Jung, and W.-S. Yoo, “Advanced slip ratio for ensuring
numerical stability of low-speed driving simulation: Part ii—lateral slip
ratio,” Proceedings of the Institution of Mechanical Engineers, Part D:
Journal of automobile engineering, vol. 233, no. 11, pp. 2903–2911,
2019.

[24] H. Roehm, A. Rausch, and M. Althoff, “Reachset conformance and
automatic model adaptation for hybrid systems,” Mathematics, vol. 10,
no. 19, p. 3567, 2022.

[25] E. Kutluay and H. Winner, “Assessment methodology for validation of
vehicle dynamics simulations using double lane change maneuver,” in
Proceedings of the 2012 Winter Simulation Conference (WSC), IEEE,
2012, pp. 1–12.

[26] J. D. Setiawan, M. Safarudin, and A. Singh, “Modeling, simulation
and validation of 14 dof full vehicle model,” in International Con-
ference on Instrumentation, Communication, Information Technology,
and Biomedical Engineering 2009, IEEE, 2009, pp. 1–6.

[27] T. D. Gillespie, “Fundamentals of vehicle dynamics,” SAE Technical
Paper, Tech. Rep., 1992.

[28] J. Balkwill, Performance vehicle dynamics: engineering and applica-
tions. Butterworth-Heinemann, 2017.

[29] S. Dieter, M. Hiller, and R. Baradini, Vehicle dynamics: Modeling and
simulation, 2018.

[30] R. Remmert, Theory of complex functions. Springer Science & Busi-
ness Media, 1991, vol. 122.

[31] M.-Y. Yu, R. Vasudevan, and M. Johnson-Roberson, “Occlusion-aware
risk assessment for autonomous driving in urban environments,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp. 2235–2241, 2019.

[32] M.-Y. Yu, R. Vasudevan, and M. Johnson-Roberson, “Risk assessment
and planning with bidirectional reachability for autonomous driving,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, 2020, pp. 5363–5369.

[33] M. Koschi and M. Althoff, “Set-based prediction of traffic participants
considering occlusions and traffic rules,” IEEE Transactions on Intel-
ligent Vehicles, vol. 6, no. 2, pp. 249–265, 2020.

[34] A. Giusti and M. Althoff, “Ultimate robust performance control of
rigid robot manipulators using interval arithmetic,” in 2016 American
Control Conference (ACC), IEEE, 2016, pp. 2995–3001.

https://link.springer.com/chapter/10.1007/978-0-387-74244-1_2
https://link.springer.com/chapter/10.1007/978-0-387-74244-1_2

18

[35] M. Althoff, “An introduction to cora 2015,” in Proc. of the Workshop
on Applied Verification for Continuous and Hybrid Systems, 2015.

[36] M. Althoff, “Reachability analysis and its application to the safety
assessment of autonomous cars,” Ph.D. dissertation, Technische Uni-
versität München, 2010.

[37] P. Holmes, S. Kousik, B. Zhang, et al., “Reachable sets for safe,
real-time manipulator trajectory design (version 1),” arXiv preprint
arXiv:2002.01591, 2020, https://arxiv.org/abs/2002.01591v1.

[38] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.

[39] M. A. Patterson and A. V. Rao, “Gpops-ii: A matlab software for
solving multiple-phase optimal control problems using hp-adaptive
gaussian quadrature collocation methods and sparse nonlinear pro-
gramming,” ACM Transactions on Mathematical Software (TOMS),
vol. 41, no. 1, pp. 1–37, 2014.

[40] Stanford Artificial Intelligence Laboratory et al., Robotic operating
system, version ROS Melodic Morenia, May 23, 2018. [Online].
Available: https://www.ros.org.

[41] E. W. Dijkstra et al., “A note on two problems in connexion with
graphs,” Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[42] E. Wan and R. Van Der Merwe, “The unscented kalman filter for
nonlinear estimation,” in Proceedings of the IEEE 2000 Adaptive Sys-
tems for Signal Processing, Communications, and Control Symposium
(Cat. No.00EX373), 2000, pp. 153–158. DOI: 10.1109/ASSPCC.2000.
882463.

[43] L. J. Guibas, A. T. Nguyen, and L. Zhang, “Zonotopes as bounding
volumes.,” in SODA, vol. 3, 2003, pp. 803–812.

[44] E. Polak, Optimization: algorithms and consistent approximations.
Springer Science & Business Media, 2012, vol. 124.

APPENDIX A
PROOF OF LEMMA 14

Proof: This proof defines a candidate Lyapunov Function
and uses it to analyze the tracking error of the ego vehicle’s
longitudinal speed before time tstop. Then it describes how
vx evolves after time tstop in different scenarios depending on
the value of vx(tstop). Finally it describes how to set the time
tbrake to guarantee vx(t) = 0 for all t ≥ tbrake. Let vsmall

x :=
Mvx

κ1,vxMvx+ϕ1,vx
, then by assumption vsmall

x ∈ (0.15, vcri
x]. This

proof suppresses the dependence on p for simplicity.
Note by (18) and rearranging (19),

ėvx(t) = −Kvxevx(t) + τvx(t) + ∆vx(t). (52)

By Definition 7 vdes
x is piecewise continuously differentiable,

so are evx and τvx . Let {t1, t2, . . . , tkmax} denote a finite
subdivision of [0, tstop) with t1 = 0 and tkmax = tstop such that
vdes

x is continuously differentiable over time interval [tk, tk+1)
for all k ∈ {1, 2, . . . , kmax − 1}. Define V (t) := 1

2e
2
vx
(t) as

a candidate Lyapunov Function for evx(t), then for arbitrary
k ∈ {1, 2, . . . , kmax−1} and t ∈ [tk, tk+1), one can check that
V (t) is always non-negative and V (t) = 0 only if evx(t) = 0.
Then from (52) and (15), V̇ (t) = −Kvxe

2
vx
(t)− (κvx(t)Mvx +

ϕvx(t))e
2
vx
(t) + evx(t)∆vx(t). Because the integral terms in

(16) and (17) are both non-negative, κvx(t) ≥ κ1,vx and
ϕvx(t) ≥ ϕ1,vx hold. Thus

V̇ (t) ≤ −Kvxe
2
vx
(t)− (κ1,vxMvx + ϕ1,u)|evx(t)|2+

+|evx(t)||∆vx(t)|.
(53)

By factoring out |evx(t)| in the last two terms in (53):

V̇ (t) ≤ −Kvxe
2
vx
(t) < 0 (54)

holds when |evx(t)| > 0 and |evx(t)| ≥
|∆vx (t)|

κ1,vxMvx+ϕ1,vx
.

Note |evx(t)| ≥ vsmall
x conservatively implies |evx(t)| ≥

|∆vx (t)|
κ1,vxMvx+ϕ1,vx

given |∆vx(t)| ≤Mvx for all time by Assump-
tion 4. Then when |evx(t)| ≥ vsmall

x > 0 we have (54) hold,
or equivalently V (t) decreases. Therefore if |evx(tk)| ≥ vsmall

x ,
|evx(t)| monotonically decreases during time interval [tk, tk+1)
as long as |evx(t)| does not reach at the boundary of closed
ball B(0, vsmall

x). Moreover, if |evx(t
′)| hits the boundary of

B(0, vsmall
x) at some time t′ ∈ [tk, tk+1), evx(t) is prohibited

from leaving the ball for all t ∈ [t′, tk+1) because V̇ (t) is
strictly negative when |evx(t)| = vsmall

x . Similarly |evx(tk)| ≤
vsmall

x implies |evx(t)| ≤ vsmall
x for all t ∈ [tk, tk+1).

We now analyze the behavior of evx(t) for all t ∈ [0, tstop).
By assumption vdes

x (0) = vx(0), then |evx(0)| = 0 < vsmall
x and

thus |evx(t)| ≤ vsmall
x for all t ∈ [t1, t2). Because both vx and

vdes
x are continuous during [0, tstop), so is evx at t = t2. Thus
|evx(t2)| ≤ vsmall

x . By iteratively applying the same reasoning,
one can show that |evx(t)| ≤ vsmall

x for all t ∈ [tk, tk+1) and for
all k ∈ {1, 2, . . . , kmax − 1}, therefore |evx(t)| ≤ vsmall

x for all
t ∈ [0, tstop). Furthermore, because vdes

x (t) converges to vcri
x as

t converges to tstop from below, vx(tstop) ∈ [vcri
x − vsmall

x , vcri
x +

vsmall
x]. Note vx(tstop) ≥ 0 because vsmall

x ≤ vcri
x .

Next we analyze how longitudinal speed of the ego vehicle
evolves after time tstop. Using V (t) = 1

2e
2
vx
(t), note (53)

remains valid for all t ≥ tstop, and (54) also holds when
|evx(t)| ≥ vsmall

x with t ≥ tstop. Recall vx(t) = evx(t) for
all t ≥ tstop given vdes

x (t) = 0 for all t ≥ tstop, then for
simplicity, the remainder of this proof replaces every evx(t)
by vx(t) in (53), (54) and V (t). Because vx(0) > 0 and vx
is continuous with respect to time, the longitudinal speed of
the ego vehicle cannot decrease from a positive value to a
negative value without passing 0. However when vx(t) = 0,
by Assumption 5 ∆vx(t) = 0, thus v̇x(t) = 0 by (19) given
vdes

x (t) = 0 for all t ≥ tstop.
From now on we assume t ≥ tstop and vx(t) ≥ 0 for all

t ≥ tstop. Recall vx(tstop) ∈ [vcri
x − vsmall

x , vcri
x + vsmall

x] and
vcri

x − vsmall
x ∈ [0, vcri

x − 0.15). We now discuss how u evolves
after time tstop by considering three scenarios, and giving an
upper bound of the time at when u reaches 0 for each scenario.
Case 1 - When vx(tstop) ≤ 0.15: Because the longitudinal
speed stays at 0 once it becomes 0, by Assumption 13 the ego
vehicle reaches a full stop no later than tfstop + tstop.
Case 2 - When 0.15 < vx(tstop) ≤ vsmall

x : By Assumption
5, upper bound of V̇ (t) can be further relaxed from (53) to
V̇ (t) ≤ −Kvxvx

2(t)−(κ1,vxMvx+ϕ1,vx−b
pro
vx)vx

2(t)+boff
vx
vx(t).

Moreover, by completing the square among the last two terms
in this equation, one can derive

V̇ (t) ≤ −Kvxvx
2(t) +

(boff
vx
)2

4(κ1,vxMvx + ϕ1,vx − bpro
vx)

. (55)

Notice
(boff

vx)
2

4(κ1,vxMvx+ϕ1,vx−bpro
vx)

< 0.152Kvx by assumption,

thus V̇ (t) < −Kvx(vx
2(t) − 0.152). This means as long as

vx(t) ∈ [0.15, vcri
x] with t ≥ tstop, we obtain V̇ (t) < 0, or

equivalently V (t) = 1
2vx

2(t) decreases monotonically. Recall
vx(tstop) ≤ vsmall

x ≤ vcri
x , then the longitudinal speed decreases

monotonically from vx(tstop) to 0.15 as time increases from
tstop. Suppose u becomes 0.15 at time t′brake ≥ tstop, then
vx(t) ≤ 0.15 for all t ≥ t′brake because of the fact that V̇ (t) is
strictly negative when vx(t) = 0.15.

https://arxiv.org/abs/2002.01591v1
https://www.ros.org
https://doi.org/10.1109/ASSPCC.2000.882463
https://doi.org/10.1109/ASSPCC.2000.882463

19

Define qvx :=
(boff

vx)
2

4(κ1,vxMvx+ϕ1,vx−bpro
vx)

, then when vx(t) ∈
[0.15, vx(tstop)], (55) can be relaxed to

V̇ (t) ≤ −Kvx · 0.152 + qvx . (56)

Integrating (56) from time tstop to t′brake and noting vx(tstop) ≤
vsmall

x results in t′brake ≤
(vsmall

x)2−0.152

2·0.152Kvx−2qvx
+ tstop. Then vx

becomes 0 no later than time tfstop + sup(t′brake).
Case 3 - When vsmall

x < vx(tstop) ≤ vcri
x + vsmall

x : Recall (54)
holds given |evx(t)| = vx(t) ≥ vsmall

x , then

V̇ (t) ≤ −Kvxe
2
vx
(t) ≤ −Kvx(v

small
x)2, (57)

and we have the longitudinal speed monotonically decreasing
from vx(tstop) at time tstop until it reaches at vsmall

x at some
time tsmall ≥ tstop. Integrating (57) from tstop to tsmall gives

1

2
(vsmall

x)2 − 1

2
vx(tstop)

2 ≤ −Kvx(v
small
x)2(tsmall − tstop). (58)

Because vx(tstop) ≤ vcri
x + vsmall

x , (58) results in tsmall ≤
(vcri

x +vsmall
x)2−(vsmall

x)2

2Kvx (v
small
x)2

+ tstop.
Once the longitudinal speed decreases to vsmall

x , we can then
apply the same reasoning as in the second scenario to construct
an upper bound of some time t′′brake that is no smaller than
tsmall and gives vx(t

′′
brake) = 0.15. However, this time we need

to integrate (56) from time tsmall to t′′brake. As a result, t′′brake ≤
(vsmall

x)2−0.152

2·0.152Kvx−2qvx
+ tsmall. Then u becomes 0 no later than time

tfstop + sup(t′′brake) based on Assumption 13.
Now that we have the upper bound for vx across these three

scenarios, recall that once u arrives at 0, it remains at 0 after-
ward, and notice sup(t′′brake) > sup(t′brake) > tstop. Considering
all three scenarios, setting tbrake as the maximum value among
tfstop + tstop, tfstop + sup(t′brake) and tfstop + sup(t′′brake), i.e.,

tbrake =tfstop +
(vsmall

x)2 − 0.152

2 · 0.152Kvx − 2qvx

+

+
(vcri

x + vsmall
x)2 − (vsmall

x)2

2Kvx(v
small
x)2

+ tstop

(59)

guarantees that vx(t) = 0 for all t ≥ tbrake.

APPENDIX B
PROOF OF LEMMA 21

Before proving Lemma 21, we prove the following lemma:

Lemma 25. Let Rj be the zonotope computed under the aug-
mented hybrid system HS beginning from X aug

0 for arbitrary
j ∈ J . Then for any xvel

0 ∈ X vel
0 and p ∈ P

slice
(
Rj⊕ROT(πh(Rj)), x

vel
0 , p

)
= ROT(πh(Rj))⊕

⊕ slice(Rj , x
vel
0 , p).

(60)

Proof: Because ROT(πh(Rj)) is independent of xvel
0 and

p by definition, Rj shares the same sliceable generators as
Rj ⊕ ROT(πh(Rj)). The slice operator only affects sliceable
generators, thus (60) holds.

Now we prove Lemma 21:
Proof: By definition slice(Rj , x

vel
0 , p) and

ROT(πh(Rj)) are both zonotopes, thus slice
(
Rj ⊕

ROT(πh(Rj)), x
vel
0 , p

)
is a zonotope based on (60). For

simplicity, denote slice
(
Rj ⊕ ROT(πh(Rj)), x

vel
0 , p

)
as <c′′, G′′>, then ξ(Rj , x

vel
0 , p) is a zonotope because

πw

(
<c′′, G′′>

)
=

〈[
[c′′]1
[c′′]2

]
,

[
[G′′]1:
[G′′]2:

]〉
.

Note πw

(
ROT(πh(Rj))

)
= rot(πh(Rj)), and by using the

definition of πw one can check that πw(A1⊕A2) = πw(A1)⊕
πw(A2) for any zonotopes A1,A2 ⊂ R9+np . By Lemma 25,

ξ(Rj , x
vel
0 , p) = πw

(
slice(Rj , x

vel
0 , p)

)
⊕ rot(πh(Rj)).

(61)
By Theorem 19 for any t ∈ Tj and j ∈ J , xaug(t) ∈

slice(Rj , x
vel
0 , p) ⊂ Rj , then h(t) ∈ πh(Rj). Because

rot(πh(Rj)) by construction outer approximates the area
over which Oego sweeps according to all possible heading
of the ego vehicle during Tj , then ξ(Rj , x

vel
0 , p) contains the

vehicle footprint oriented according to πh(Rj) and centered
at πw(x

aug(t)) during Tj .

APPENDIX C
PROOF OF THEOREM 23

We first present a pair of lemmas. The first lemma simplifies
the expression of ξ(Rj , x

vel
0 , p).

Lemma 26. Let Rj = <cRj
, [gRj ,1, gRj ,2, . . . , gRj ,ℓj]> be

the zonotope computed under the augmented hybrid system
HS beginning from X aug

0 for arbitrary j ∈ J , and let
rot(πh(Rj)) = <crot, Grot> be defined as (41). Then
for arbitrary xvel

0 ∈ X vel
0 and p ∈ P , there exist cξ ∈ W ,

A ∈ R2×np and a real matrix Gξ with two rows such that
ξ(Rj , x

vel
0 , p) = <cξ +A · p, Gξ>.

Proof: Recall cslc is defined as in (37), then

ξ(Rj , x
vel
0 , p) = <πw(c

slc) + crot, [πw(gRj ,(4+np)), . . .

. . . , πw(gRj ,ℓj), Grot]>,
(62)

which follows from using (61) and (36) and comes from
denoting rot(πh(Rj)) as <crot, Grot> and performing
Minkowski addition on two zonotopes. cslc can be written as

cslc = cRj
+

9∑
k=7

[xvel
0](k−6) − [cRj

]k

[gRj ,(k−6)]k
gRj ,(k−6)+

−
9+np∑
k=10

[cR]k
[gR,(k−6)]k

gR,(k−6) +A′ · p

(63)

with A′ =
[

1
[gRj ,4

]10
gRj ,4, . . . ,

1
[gRj ,(3+np)](9+np)

gRj ,(3+np)

]
.

Therefore by performing algebra one can find that
ξ(Rj , x

vel
0 , p) = <cξ +A · p, Gξ> with some cξ, Gξ and

A =

[
1

[gRj ,4]10
πw(gRj ,4),

1

[gRj ,5]11
πw(gRj ,5), . . .

. . . ,
1

[gRj ,(3+np)](9+np)
πw(gRj ,(3+np))

]
.

(64)

Note ϑloc(j, i, xpos
0) is a zonotope by construction in (45)

because ϑ(j, i) is a zonotope. The following lemma follows
from [43, Lem. 5.1].

20

Lemma 27. Let ξ(Rj , x
vel
0 , p) = <cξ + A · p, Gξ> be com-

puted as in Lemma 26, and let ϑloc(j, i, xpos
0) =< cϑ, Gϑ > be

computed from Assumptions 22 and (45). Then ξ(Rj , x
vel
0 , p)∩

ϑloc(j, i, xpos
0) ̸= ∅ if and only if A ·p ∈ <cϑ− cξ, [Gϑ, Gξ]>.

Now we can finally state the proof of Theorem 23:
Proof: Let ξ(Rj , x

vel
0 , p) = <cξ + A · p, Gξ> as

computed in Lemma 26, and let ϑloc(j, i, xpos
0) =< cϑ, Gϑ >

be computed from Assumption 22 and (45). Because all
zonotopes are convex polytopes [43], <cϑ− cξ, [Gϑ, Gξ]> ⊂
W ⊆ R2 can be transferred into a half-space representation
A := {a ∈ W | B · a − b ≤ 0} for some matrix B and
vector b. To find such B and b, we denote c = cϑ − cξ ∈ R2

and G = [Gϑ, Gξ] ∈ R2×ℓ with some positive integer ℓ, and

denote B− =

[
−[G]2:
[G]1:

]
∈ R2×ℓ. Define

B+ :=

[
[B−]:1
∥[B−]:1∥

,
[B−]:2
∥[B−]:2∥

, . . . ,
[B−]:ℓ
∥[B−]:ℓ∥

]⊤
∈ Rℓ×2. (65)

Then as a result of [36, Thm 2.1], <c, G> = {a ∈ W |
B · a− b ≤ 0} with

B =

[
B+

−B+

]
∈ R2ℓ×2, (66)

b =

[
B+ · c+ |B+ ·G| · 1
−B+ · c+ |B+ ·G| · 1

]
∈ R2ℓ (67)

where 1 ∈ Rℓ is the column vector of ones. By Lemma 27,
ξ(Rj , x

vel
0 , p)∩ϑloc(j, i, xpos

0) = ∅ if and only if A ·p /∈ <cϑ−
cξ, [Gϑ, Gξ]>, or in other words A · p /∈ A. Notice A · p /∈ A
if and only if max(B ·A · p− b) > 0. The subgradient claim
follows from [44, Theorem 5.4.5].

Jinsun Liu received BE degrees in electrical en-
gineering from the University of Minnesota and
Beijing Jiaotong University both in 2015; an MS
degree in electrical engineering and a PhD degree
in robotics both from the University of Michigan in
2023. His research interests include robotics, control,
motion planning, and optimization.

Yifei Simon Shao earned a BE degree in Me-
chanical Engineering from The Cooper Union in
2019. He then obtained MS dual degrees in Robotics
and Mechanical Engineering from the University
of Michigan in 2021. Currently, he is pursuing a
PhD at the University of Pennsylvania. His research
encompass the utilization of optimization tools and
machine learning in motion planning.

Lucas Lymburner received a BSE degree in Com-
puter Science from the University of Michigan in
2021. He is currently pursuing an MS degree in
Robotics from the University of Michigan.

Hansen Qin received an MS degree in robotics from
the University of Michigan. His background includes
motion planning and control theory. Currently, he is
working as a simulation engineer with Latitude AI
on their L3 self-driving division.

Vishrut Kaushik received an MS degree in robotics
from the University of Michigan in 2023. He cur-
rently works with Peer Robotics and is interested in
solving perception problems for robots in dynamic
environments.

Lena Trang is currently pursuing a Computer En-
gineering BSE and Robotics BSE dual degree at the
University of Michigan. She is also on the Michigan
Mars Rover Team where she was Robotic Arm
Subteam Lead and a Mobility Subteam member. Her
interests include deep space robotics and mechanical
design.

Ruiyang Wang (Student Member, IEEE) received
a BS degree in mechanical engineering from the
University of Michigan in 2022. He is currently
working toward an MS degree in robotics, focusing
on multi-robot system coordination and control with
the Department of Robotics, University of Michigan.

Vladimir Ivanovic received the Ph.D. degree in me-
chanical engineering from the University of Zagreb,
Zagreb, Croatia, in 2010. He is currently a Technical
Expert with the Controls and Automated Systems
R&A Group, Research and Innovation Center, Ford
Motor Company. Since joining Ford in 2011, he has
been contributed to several technologies in the area
of automatic transmissions, active drivelines, and
active driver assist systems. His research interests
include modeling and control of automotive systems.

H. Eric Tseng received the B.S. degree from the
National Taiwan University in 1986, and the MS
and PhD degrees in mechanical engineering from the
University of California, Berkeley in 1991 and 1994,
respectively. His technical achievements have been
recognized seven times with Ford’s highest technical
award—the Henry Ford Technology Award, as well
as by the American Automatic Control Council with
the Control Engineering Practice Award in 2013. He
has over 100 patents and over 120 publications. He
is an NAE Member.

Ram Vasudevan is an associate professor in
robotics and mechanical engineering at the Uni-
versity of Michigan. He received a BS, MS, and
PhD degrees in electrical engineering and computer
sciences from the University of California, Berkeley
in 2006, 2009, and 2012, respectively. His work has
received best paper awards at the IEEE Conference
on Robotics and Automation, the ASME Dynam-
ics Systems and Controls Conference, and IEEE
OCEANS Conference.

	Introduction
	Preliminaries
	Hybrid Vehicle Model
	Vehicle States and Tire Models
	High-Speed Mode
	Low-Speed Mode
	Guard and Reset Map

	Trajectory Design and Safety
	Trajectory Parameterization
	Not-At-Fault
	Environment and Sensing

	Controller Design
	Robust Controller
	Extracting Wheel Speed and Steering Inputs

	Computing and Using the FRS
	Augmented State and Augmented Hybrid System
	Offline FRS Computation
	Slicing
	Accounting for the Vehicle Footprint in the FRS

	Online Planning
	Nonzero Initial Position
	Online Optimization
	Representing the Constraint and its Gradient in (Opt)
	Online Operation

	Experiments
	Desired Trajectories
	Subdivision of Initial Set and Families of Trajectories
	Simulation on an FWD Model
	Simulation Environment and Task
	REFINE Simulation Implementation
	Other Implemented Methods
	Evaluation Criteria
	Results

	Real World Experiments
	State Estimation and System Identification on Modeling Error in Vehicle Dynamics
	Demonstration

	Applicability and Limitations
	Conclusion
	Appendix A: Proof of Lemma 14
	Appendix B: Proof of Lemma 21
	Appendix C: Proof of Theorem 23
	Biographies
	Jinsun Liu
	Yifei Simon Shao
	Lucas Lymburner
	Hansen Qin
	Vishrut Kaushik
	Lena Trang
	Ruiyang Wang
	Vladimir Ivanovic
	H. Eric Tseng
	Ram Vasudevan

