
Supplementary Appendices
Zachary Brei1, Jonathan Michaux2, Bohao Zhang2, Patrick Holmes2, Ram Vasudevan1

APPENDIX A
DEFINITIONS OF OPERATIONS IN TAB. I

This appendix provides definitions for the interval and poly-
nomial zonotope operations given in Tab. I. Before proceeding
further, note that for vectors a,b ∈ R3, we write the cross
product a×b as a×b, where

a× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 . (A1)

A. Interval Operations

The Minkowski sum and difference of [x] and [y] are

[x]⊕ [y] = [x+ y,x+ y], (A2)

[x]⊖ [y] = [x− y,x− y]. (A3)

The product of [x] and [y] is

[x][y] =
[

min
(
xy,xy,xy,xy

)
,max

(
xy,xy,xy,xy

)]
. (A4)

Given a scalar interval [a] or interval matrix [Y] multplied
by an interval matrix [X], the element in the ith row and jth

column of the product is

([a][X])i j = [a][X]i j, (A5)

([X][Y])i j =
n⊕

k=1

([X]ik[Y]k j), . (A6)

where n is the number of columns of [X] and number of rows
of [Y]. Lastly, given two interval vectors [x], [y] ⊂ R3, their
cross product is

[x]⊗ [y] = [x]×[y], (A7)

where [x]× is the skew-symmetric matrix representation of [x]
as in (A1) (i.e., a matrix with interval entries).

B. Polynomial Zonotope Operations

Similar to zonotopes, intervals can also be written as poly-
nomial zonotopes. Consider the interval [z] = [z,z] ⊂ Rn. We
can convert [z] to a polynomial zonotope z using

z =
z+ z

2
+

n

∑
i=1

zi− zi
2

xi, (A8)

where x ∈ [−1,1]n is the indeterminate vector.

1Mechanical Engineering, University of Michigan, Ann Arbor, MI
⟨breizach, ramv⟩@umich.edu.

2Robotics, University of Michigan, Ann Arbor, MI ⟨jmichaux,
jimzhang, pdholmes, ramv ⟩@umich.edu.

First, the Minkowski Sum of two polynomial zonotopes
P1 ⊂ Rn = PZ(gi,αi,x) and P2 ⊂ Rn = PZ(h j,β j,y) follows
from polynomial addition:

P1⊕P2 = {z ∈ Rn | z = p1 + p2, p1 ∈ P1, p2 ∈ P2} (A9)

=

{
z ∈ Rn | z =

ng

∑
i=0

gixαi +
nh

∑
j=0

h jyβ j

}
. (A10)

Similarly, we may write the matrix product of two polynomial
zonotopes P1 and P2 when the sizes are compatible (i.e.,
elements in P1 have the same number of columns as elements
of P2 have rows). Letting P1 ⊂ Rn×m and P2 ⊂ Rm×k, we
obtain P1P2 ⊂ Rn×k:

P1P2 = {z ∈ Rn×k | z = p1 p2, p1 ∈ P1, p2 ∈ P2} (A11)

=

{
z ∈ Rn×k | z =

ng

∑
i=0

gi(
q

∑
j=0

h jyβ j)xαi

}
. (A12)

When P1 ⊂ Rn×n is square, exponentiation Pm
1 may be per-

formed by multiplying P1 by itself m times.
Furthermore, if P1 ⊂R3 and P2 ⊂R3, we implement a set-

based cross product as matrix multiplication. We create P×1 ⊂
R3×3 as

P×1 =

{
A ∈ R3×3 | A =

ng

∑
i=0

[0 −gi,3 gi,2
gi,3 0 −gi,1
−gi,2 gi,1 0

]
xαi

}
(A13)

where gi, j refers to the jth element of gi. Then, the set-based
cross product P1 ⊗ P2 = P×1 P2 is well-defined. We briefly
note that the addition, multiplication and cross product of a
polynomial zonotope with a constant vector or matrix is well-
defined if the constant is appropriately sized. In this case, one
constructs a polynomial zonotope with that constant vector or
matrix as the center g0 and no other generators, and applies
the definitions above.

Both Minkowski summation and multiplication of polyno-
mial zonotopes can be complicated by the fact that P1 and P2
may share indeterminates. For instance, in the examples above,
the i-th element of x and the j-th element of y may represent
the same indeterminate. In practice, polynomial zonotopes can
be brought to a common representation by only considering
unique indeterminates before applying the operations above,
as discussed in [16, Sec. II.a.1].

Given the jth indeterminate x j and a value σ ∈ [−1,1], the
slicing operation which yields a subset of P by plugging σ

into the specified element x j and is defined as

slice(P,x j,σ)⊂ P =

{
z ∈ P | z =

ng

∑
i=0

gixαi , x j = σ

}
.

(A14)

In particular, we define the sup and inf operations which
return these upper and lower bounds, respectively by taking
the absolute values of generators. For P⊆ Rn, these return

sup(P) = g0 +
ng

∑
i=1
|gi| , (A15)

inf(P) = g0−
ng

∑
i=1
|gi| . (A16)

Note that for any z ∈ P, sup(P) ≥ z and inf(P) ≤ z, where
the inequalities are taken element-wise. Recall these bounds
may not be tight because possible dependencies between
indeterminates are not accounted for, but they are quick to
compute.

Though we have defined several basic operations like ad-
dition and multiplication above, it may be desirable to use
polynomial zonotopes as inputs to more complicated functions.
One can overapproximate any analytic function evaluated on
a polynomial zonotope using a Taylor expansion, which itself
can be represented as a polynomial zonotope [17, Sec 4.1][16,
Prop. 13]. Consider an analytic function f : R → R and
P1 = PZ(gi,αi,x), with each gi ∈ R. Then,

f (P1) = {y ∈ R | y = f (z),z ∈ P1}. (A17)

We generate P2 such that f (P1)⊆P2 using a Taylor expansion
of degree d ∈ N, where the error incurred from the finite
approximation is overapproximated using a Lagrange remain-
der. The method follows the Taylor expansion found in the
reachability algorithm in [16], which builds on previous work
on conservative polynomialization found in [17]. Recall that
the Taylor expansion about a point c ∈ R is

f (z) =
∞

∑
n=0

f (n)(c)
n!

(z− c)n, (A18)

where f (n) is the nth derivative of f . Note that the error
incurred by a finite Taylor expansion can be bounded using
the Lagrange remainder r [18, p. 7.7]:

| f (z)−
d

∑
n=0

f (n)(c)
n!

(z− c)n| ≤ r, (A19)

where r is given by

r =
M|z− c|d+1

(d +1)!
, (A20)

M = max
δ∈[c,z]

(| f d+1(δ)|). (A21)

For a polynomial zonotope, the infinite dimensional Taylor
expansion is given by

f (P1) =
∞

∑
n=0

f (n)(c)
n!

(P1− c)n (A22)

In practice, only a finite Taylor expansion of degree d ∈ N
can be computed. Letting c = g0 (i.e., the center of P1), and
noting that (z− c) = ∑

ng
i=1 gixαi for z ∈ P1, we write

P2 :=

{
z ∈ R |z ∈

d

∑
n=0

(
f (n)(g0)

n!
(

ng

∑
i=1

gixαi)n

)
⊕ [r]

}
(A23)

and the Lagrange remainder [r] can be computed using interval
arithmetic as

[r] =
[M][(P1− c)d+1]

(d +1)!
, (A24)

[M] = f (d+1)([P1]) (A25)

where [(P1− c)d+1] = [inf((P1− c)d+1),sup((P1− c)d+1)]
is an overapproximation of (P1− c)d+1. Note that P2 can be
expressed as a polynomial zonotope because all terms in the
summation are polynomials of x, and the interval [r] can be
expressed as a polynomial zonotope as in (A8). Just as we
denote polynomial zonotopes using bold symbols, we denote
the polynomial zonotope overapproximation of a function
evaluated on a zonotope using bold symbols (i.e., f(P1) is the
polynomial zonotope over approximation of f applied to P).
Note the usual order of operations for addition, multiplication
and exponentiation apply for polynomial zonotope operations
as well. Table I summarizes these operations. Note as de-
scribed in the table these operations can either be computed
exactly or in an overapproximative fashion using polynomial
zonotopes.

The operations defined above (multiplication in particular)
increases the number of generators required to represent a
polynomial zonotope, therefore increasing the memory re-
quired to store a polynomial zonotope. In practice, succes-
sively applying these operations can become computationally
intractable. To combat this computational burden, we define a
reduce operation for a polynomial zonotope. The reduce oper-
ation generates overapproximations of polynomial zonotopes
through using fewer generators. If a polynomial zonotope
P⊂ Rn has ng terms, but a maximum of q terms are desired,
excess terms can be overapproximated by an interval:

reduce(P,nh) =

{
z ∈ Rn | z ∈

nh−n

∑
i=0

gixαi ⊕ [−b,b]

}
(A26)

where b j is equal to ∑
ng
i=nh−n+1 |gi, j| where gi, j is the jth

element of gi. This means that the last ng−nh−n+1 terms are
overapproximated by an n-dimensional hyperbox represented
by an interval. This interval can be expressed as a polynomial
zonotope as in (A8), and so the output of reduce(P,q)
is itself a polynomial zonotope. Notice that reduce(P,q)
always overapproximates P, i.e. P⊆ reduce(P,q) [16, Prop.
16]. One can reorder the terms of the polynomial zonotope
such that only certain desirable terms are replaced by intervals,
e.g. to produce a tighter overapproximation.

APPENDIX B
NEWTON-EULER ALGORITHM

This appendix summarizes the formulas used to recursively
compute the angular velocity and acceleration of link j using
the angular velocity and acceleration of link j−1 and formulas
to similarly compute the linear acceleration of each link frame
and center of mass of each link. Note that the angular velocity
associated with link j expressed in frame j−1 is denoted ω

j
j .

Then, the Newton-Euler equations can be used to iteratively

calculate the forces and moments both at the CoM of each link
and at each joint. In particular, we exploit this formulation with
the fixed joint between the tray and object in order to calculate
the contact wrench. We use this convention for all quantities
of interest not just angular velocities. Note for convenience,
throughout this appendix, we drop the dependence of the ve-
locity, acceleration, and rotation matrices on the configuration
of the robot.

Lemma 10 (Iterative Newton Euler Formulation). [12, Ch 6]
Given the angular velocity of link j−1 and the velocity of the
robot, one can compute the angular velocity of link j

ω
j
j = R j

j−1ω
j−1
j−1 + q̇ jz j. (B1)

where z j is the rotation axis vector of the jth joint. Similarly,
given the angular acceleration of link j − 1, the angular
acceleration of link j is:

ω̇
j
j = R j

j−1ω̇
j−1
j−1 +(R j

j−1ω
j
j)× (q̇ jz j)+ q̈ jz j. (B2)

The linear acceleration of each link frame is then

v̇ j
j = (R j

j−1v̇ j−1
j−1)+(ω̇ j

j × p j−1
j)+

(
ω

j
j × (ω j

j × p j−1
j)

)
, (B3)

and the linear acceleration of the CoM of link j is

v̇ j
CoM, j = v̇ j

j +(ω̇ j
j × p j

CoM, j)+
(

ω
j
j × (ω j

a, j× p j
CoM, j)

)
. (B4)

Then the inertial force and torque acting at the center of mass
of each link is:

F j
j = m j v̇

j
j,CoM (B5)

N j
j = I jω̇

j
j +ω

j
j ×
(

Iω
j
j

)
(B6)

where I j is the spatial inertia matrix of the jth link about it’s
CoM. In addition, the forces and moments acting on the jth

link can be defined as:

f j
j = R j

j+1 f j+1
j+1 +F j

j , (B7)

n j
j = R j

j+1n j+1
j+1 + c j

j×F j
j +N j

j +
(

p j
j+1×

(
R j

j+1 f j+1
j+1

))
(B8)

Then the wrench exerted by the (j−1)th link onto the jth link,

through the jth joint, is w j =

[
f j

j

n j
j

]
.

When implementing these equations, a Recursive New-
ton Euler Algorithm (RNEA) is used. Eqs. (B1)-(B4) are
performed on the forward pass while Eqs. (B7)-(B8) are
performed on the backwards pass, as seen in Alg. 1. Note that
the base case for the backwards pass requires initialization of
f nq+2
nq+2 , nnq+2

nq+2 and Rnq
nq+2. Since we assume no external wrenches

are applied to the object, these are initialized to zero vectors
for f nq+2

nq+2 and nnq+2
nq+2 and an identity matrix for Rnq

nq+2. Further,
the effect of gravity on each link is accounted for by initializ-
ing the base joint’s acceleration to be a0

0 = (0,0,9.81)⊤m s−2

[12, Sec. 6.5].

APPENDIX C
PROOF OF LEMMA 4 AND POLYNOMIAL ZONOTOPE

FORMULATION OF THE CONSTRAINTS

This appendix walks through the formulation of the con-
straints to prevent relative motion and how they are overap-
proximated using polynomial zonotopes. The constraints have
to ensure that the object being manipulated does not move
relative to the supporting tray. Therefore, all six degrees of
freedom of the object’s motion have to be addressed. In order
to form the polynomial zonotope overapproximations, the
overapproximation of the contact wrench, wo(qA(Ti;K), [∆]),
is used.

A. Vertical Separation Constraint

The first degree of freedom to constrain is translation in
the ẑo direction, shown in Fig. 2. Translation into the tray is
prevented by a reaction normal force from the tray, which is
assumed to be a rigid body. The first constraint on the contract
wrench prevents translation away from the tray surface. A
violation of this constraint means that the two bodies separate
from one another, resulting in no normal force between the
two bodies. Thus this separation constraint can be written as

−fo,z(qA(t;k),∆)≤ 0, (C1)

where fo,z(qA(t;k),∆) is the vertical force component of the
contact wrench expressed in the contact frame, thus it cor-
responds to the normal force. Satisfaction of this constraint
means that a normal force exists, and therefore the object is
not translating vertically relative to the tray.

The normal component of the contact force is overapprox-
imated by fo,z(qA(Ti;k), [∆]), i.e., for each k ∈K

fo,z(qA(t;k),∆) ∈ fo,z(qA(Ti;k), [∆]), ∀t ∈ Ti (C2)

Plugging the overapproximation of the normal force into (3):

hsep(w
nq+1
nq+1(qA(Ti;k), [∆])) :=−fo,z(qA(Ti;k), [∆])) (C3)

In order to ensure satisfaction of (7), the polynomial zono-
tope version of the constraint entails choosing k such that

sup(hsep(w
nq+1
nq+1(qA(Ti;k), [∆])))≤ 0, ∀i ∈ {1, . . . ,nt}

(C4)
Since this constraint is conservatively overapproximative of
the actual normal force applied, it is guaranteed that there is
a normal force between the loose object and tray when this
constraint is satisfied.

B. Linear Slipping Constraint

The next two degrees of freedom, translation in the x̂o and
ŷo directions, can be constrained using a standard Coulomb
static friction law. The static friction law is formed using
the both the normal and tangential components of the contact
force. Normally, the tangential component would be calculated
by taking the norm of the planar contact force components.
However, a square root operation for polynomial zonotopes
does not currently exist. Therefore, we reformulate the static

friction law so that a polynomial zonotope version can be
written. The reformulation is as follows:

|fo,T (qA(t;k),∆)| ≤ µs|fo,z(qA(t;k),∆)| (C5)

is equivalent to

fo,T ((qA(t;k),∆))2 ≤ µ
2
s fo,z((qA(t;k),∆))2 (C6)

which can be expanded to(√
fo,x((qA(t;k),∆))2 + fo,y((qA(t;k),∆))2

)2

(C7)

≤ µ
2
s fo,z((qA(t;k),∆))2 (C8)

with the final reformulated slipping constraint written as:

fo,x((qA(t;k),∆))2 + fo,y((qA(t;k),∆))2 (C9)

−µ
2
s fo,z((qA(t;k),∆))2 ≤ 0 (C10)

This constraint requires the tangential components of the
contact force to lie within the static friction cone. Satisfaction
of this constraint means that there is no relative linear slip
between the object and supporting surface. Note that we do
not consider rotational friction for simplicity, but extending the
formulation to include such a constraint is a straightforward
extension.

Like the normal component of the contact force, the tan-
gential components are overapproximated by elements of
wo(Ti;K). In particular, for each k ∈ K

fo,x(qA(t;k),∆) ∈ fo,x(qA(Ti;k), [∆])) ∀t ∈ Ti

fo,y(qA(t;k),∆) ∈ fo,y(qA(Ti;k), [∆])) ∀t ∈ Ti
(C11)

The polynomial zonotope terms can be substituted into (4).

hslip(w
nq+1
nq+1(qA(Ti;k), [∆])) := (C12)

fo,x(qA(Ti;K), [∆])fo,x(qA(Ti;K), [∆]) (C13)
⊕ fo,y(qA(Ti;K), [∆])fo,y(qA(Ti;K), [∆]) (C14)

⊖µ
2
s fo,z(qA(Ti;K), [∆])fo,z(qA(Ti;K), [∆])

(C15)

Then, the polynomial zonotope version of the constraint in (8)
can be written as

sup(hslip(w
nq+1
nq+1(qA(Ti;k), [∆])))≤ 0 (C16)

and by choosing k such that (C16) is satisfied ∀i∈ {1, . . . ,nt},
it is guaranteed that the object does not translate tangentially
to the support surface.

Note that the coefficient of static friction µs could be
uncertain, meaning that the actual coefficient exists in an
interval µs ∈ [µs,lower,µs,upper]. However, it is only necessary
to consider the smallest possible value to ensure no slip occurs,
so in (C12), µs = µs,lower, since the static coefficient of friction
is always a positive number.

C. Tipping Constraint

Finally, we must constrain the last two degrees of freedom,
which are rotation about x̂o and ŷo. Motion about these axes
corresponds to the object tipping over. To prevent this, we use
a Zero Moment Point (ZMP) constraint, which requires that
the ZMP point exists inside the convex hull of the contact area
of the object [19]. This ensures that the normal component of
the contact force can apply a sufficient counteracting moment
to balance the gravito-inertial wrench of the object. First, let
the gravito-inertial wrench acting on the manipulated object
be defined as

w̃o(qA(t;k),∆) =
[

f̃(qA(t;k),∆)
ñ(qA(t;k),∆)

]
, (C17)

where this wrench, w̃o(qA(t;k),∆) ∈ R6, is described in the
frame associated with joint o. Next, the vector from pCoM to
the ZMP point is [19, Sec. 2]:

pZMP(qA(t;k),∆) =
n̂× ñpCoM(qA(t;k),∆)
n̂ · f̃pCoM(qA(t;k),∆)

, (C18)

where ñpCoM(qA(t;k),∆) is the gravito-inertial moment acting
on the object about pCoM, and f̃pCoM(qA(t;k),∆) is the gravito-
inertial force acting on pCoM.

Next, there are only two wrenches acting on the object,
the wrench applied by the manipulator and the gravito-
inertial wrench of the object. For there to be no relative mo-
tion, these two wrenches must balance each other. Therefore
ñpCoM(qA(t;k),∆) = −no(qA(t;k),∆) and f̃pCoM(qA(t;k),∆) =
−fo(qA(t;k),∆). Substituting these terms in (C18) yields

pZMP(qA(t;k),∆) =
n̂×no(qA(t;k),∆)
n̂ · fo(qA(t;k),∆)

. (C19)

Note that the contact frame is located at pCoM, so (C19) gives
the position of the ZMP point with respect to the origin of the
contact frame. Using the description of the contact patch as
in Ass. 2, the ZMP constraint can be written as:∥∥∥∥ n̂×no(qA(t;k),∆)

(n̂ · fo(qA(t;k),∆))

∥∥∥∥
2
≤ r (C20)

Note that the denominator is a scalar quantity, and so (C20)
can be rewritten as∣∣∣∣ 1

(n̂ · fo(qA(t;k),∆))

∣∣∣∣∗∥n̂×no(qA(t;k),∆)∥2 ≤ r (C21)

which is equivalent to

∥n̂×no(qA(t;k),∆)∥2− r |n̂ · fo(qA(t;k),∆)| ≤ 0 (C22)

If this constraint is satisfied, then the ZMP point stays inside
the circular contact area and the object does not rotate about
the x̂o and ŷo axes.

The tipping constraint must also be reformulated to work
with polynomial zonotope objects. The calculation of the
tipping constraint, as shown in (5), requires a square root
operation in order to evaluate the l2-norm, which does not cur-
rently exist for polynomial zonotopes. Therefore, we rewrite
the constraint as follows:

∥n̂×no(qA(t;k),∆)∥2− r |n̂ · fo(qA(t;k),∆)| ≤ 0 (C23)

∥n̂×no(qA(t;k),∆)∥2 ≤ r |n̂ · fo(qA(t;k),∆)| (C24)√
(n̂×no(qA(t;k),∆))2 ≤ r |n̂ · fo(qA(t;k),∆)| (C25)

(n̂×no(qA(t;k),∆))2 ≤ r2(n̂ · fo(qA(t;k),∆))2 (C26)

(n̂×no(qA(t;k),∆))2− r2(n̂ · fo(qA(t;k),∆))2 ≤ 0 (C27)

Overapproximations of these components are calculated in
order to form the polynomial zonotope overapproximation of
the tipping constraint. First, we have that for each k ∈K

wo(qA(t;k),∆) ∈ wo(qA(Ti;k), [∆]) ∀t ∈ Ti (C28)

This means that the contact force and moment vector can
be overapproximated by the corresponding components of the
wrench overapproximation

no(qA(t;k),∆) ∈ no(qA(Ti;k), [∆]) ∀t ∈ Ti

fo(qA(t;k),∆) ∈ fo(qA(Ti;k), [∆]) ∀t ∈ Ti
(C29)

The contact force and moment vector overapproximations
can be substituted into (C27). The polynomial zonotope over-
approximation of the cross product in (C27) is

n̂⊗no(qA(Ti;K), [∆]) =

d1(qA(Ti;K), [∆])
d2(qA(Ti;K), [∆])

0

 (C30)

and the overapproximation of the dot product in (C27) is

n̂⊙ fo(qA(Ti;K), [∆]) = d3(qA(Ti;K), [∆]) (C31)

Thus an overapproximation of (5) can be written as

htip(w
nq+1
nq+1(qA(Ti;k), [∆])) = (C32)

d1(qA(Ti;k), [∆])d1(qA(Ti;k), [∆]) (C33)
⊕d2(qA(Ti;k), [∆])d2(qA(Ti;k), [∆]) (C34)

⊖d3(qA(Ti;k), [∆])d3(qA(Ti;k), [∆])r2 (C35)

Then, the polynomial zonotope version of the constraint can
be written as

sup(htip(w
nq+1
nq+1(qA(Ti;k), [∆])))≤ 0 (C36)

By choosing k such that (C36) is satisfied ∀i ∈ {1, ...,nt}, it
is guaranteed that the object will not tip over. Similar to the
coefficient of friction, the radius of the contact area could
be uncertain but only the smallest possible value needs to
be considered in order to guarantee that no tipping occurs.
Therefore, in (C32), if r ∈ [rlower,rupper], then r = rlower, since
the radius must be a positive quantity.

APPENDIX D
CONTROLLER IMPLEMENTATION DETAILS

We use the same controller as presented in [9, Sec. VII],
with a different Kr, VM and σm. In particular, we let VM = 2.0×
10−2 which together with the bound on the smallest eigenvalue

σm, yields the uniform bound ||r|| ≤
√

2VM
σm

=
√

2×2.0×10−2

8.0386 ≈
0.0705. Applying Lem. 5 yields εp, j ≈ 0.0176 rad and εv ≈
0.1411 rad/s. We let Kr = 4I7x7 where I7x7 is a 7x7 identity
matrix.

	Introduction
	Preliminaries
	Wrench and Online Optimization
	Manipulator Model
	Tray and Object Model
	Kinematics and Dynamics

	Trajectory Parameterization and Online Control
	Contact Constraints
	Online Trajectory Optimization

	Planning Algorithm Formulation
	Robust Passivity-Based Controller
	Polynomial Zonotope Overapproximation
	Time Horizon and Trajectory Parameter PZs
	Trajectory PZs

	Implementable Online Optimization Problem
	WAITR's Online Operation

	Experiments
	Trajectory Creation
	Implementation Details
	Robot Model and Environment
	Trajectories
	Tracking Error Bound
	High-level Planners
	Comparison Framework
	Trajectory Optimization Implementation

	Simulation Experiments
	Simulation Setup
	Results

	Hardware Results
	Setup
	Results

	Conclusion
	Appendix A: Definitions of Operations in Tab. I
	Interval Operations
	Polynomial Zonotope Operations

	Appendix B: Newton-Euler Algorithm
	Appendix C: Proof of Lemma 4 and Polynomial Zonotope Formulation of the Constraints
	Vertical Separation Constraint
	Linear Slipping Constraint
	Tipping Constraint

	Appendix D: Controller Implementation Details

