rtd.planner.trajopt.Objective

class rtd.planner.trajopt.Objective[source]

Bases: object

Base interface for creating the objective to optimize for the trajopt problem

This should be extended and used to create an objective callback function for the optmization engine. Any necessary transformations or special function calls can take place inside the object

__init__()

Methods

__init__()

genObjective(robotState, waypoint, reachableSets)

Generate an objective callback for use with some optimizer

abstract genObjective(robotState: EntityState, waypoint, reachableSets: dict[str, rtd.planner.reachsets.ReachSetInstance.ReachSetInstance]) Callable[source]

Generate an objective callback for use with some optimizer

Given the information, generate a handle for an objective function with return values cost and grad_cost

Note

Any timeouts should be handled by the OptimizationEngine itself

Parameters:
  • robotState – Initial state of the robot

  • waypoint – Some goal waypoint we want to get close to

  • reachableSets – Instances of the relevant reachable sets

Returns:

callback function of form def objectiveCallback(*params) -> [cost, grad_cost]

Return type:

function_handle