rtd.planner.trajopt.Objective
- class rtd.planner.trajopt.Objective[source]
Bases:
object
Base interface for creating the objective to optimize for the trajopt problem
This should be extended and used to create an objective callback function for the optmization engine. Any necessary transformations or special function calls can take place inside the object
- __init__()
Methods
__init__
()genObjective
(robotState, waypoint, reachableSets)Generate an objective callback for use with some optimizer
- abstract genObjective(robotState: EntityState, waypoint, reachableSets: dict[str, rtd.planner.reachsets.ReachSetInstance.ReachSetInstance]) Callable [source]
Generate an objective callback for use with some optimizer
Given the information, generate a handle for an objective function with return values cost and grad_cost
Note
Any timeouts should be handled by the OptimizationEngine itself
- Parameters:
robotState – Initial state of the robot
waypoint – Some goal waypoint we want to get close to
reachableSets – Instances of the relevant reachable sets
- Returns:
callback function of form def objectiveCallback(*params) -> [cost, grad_cost]
- Return type:
function_handle