rtd.planner.trajopt.ScipyOptimizationEngine
- class rtd.planner.trajopt.ScipyOptimizationEngine(trajOptProps: TrajOptProps, **options)[source]
Bases:
OptimizationEngine
Optimization Engine based on scipy.optimize.fsolve
- __init__(trajOptProps: TrajOptProps, **options)[source]
Methods
__init__
(trajOptProps, **options)performOptimization
(initialGuess, ...)Use scipy solve to perform the optimization
- performOptimization(initialGuess: NDArray[Shape[N], float64], objectiveCallback: Callable, constraintCallback: Callable, bounds: dict) tuple[bool, nptyping.ndarray.NDArray, float] [source]
Use scipy solve to perform the optimization
- Parameters:
initialGuess – An initial guess Vecnp used for the optimization. May not be the correct size
objectiveCallback – A callback for the objective function of this specific optimization
constraintCallback – A callback for the nonlinear constraints, where the return time is expected to be [c, ceq, gc, gceq].
bounds – A dict containing input and output bounds
- Returns:
bool, parameters: Vecnp, cost: float): success is if the optimization was successful or didn’t time out. parameters are the trajectory parameters to use. cost is the final cost for the parameters found
- Return type:
(success